期刊文献+

基于手机数据的城市交通大区OD分布估计——以旧金山市为例 被引量:6

Using Mobile Phone Data to Estimate Trip Distribution of Urban Mega Traffic Analysis Zones: A Case Study in San Francisco
在线阅读 下载PDF
导出
摘要 在大数据时代,手机数据因普及率高、采集成本低等优点逐渐受到人们的重视。手机通信运营商在为手机用户提供通信服务的同时会记录每次服务的时空信息,因此利用手机数据可以挖掘出用户的位置信息,并应用于城市居民出行OD分布估计。提出以手机数据为基础对城市交通大区之间OD分布进行估计的方法。利用居民手机数据估计美国旧金山市各交通大区之间的出行分布,并结合居民出行调查数据对估计结果进行检验。结果显示基于手机数据的出行估计具有较高的可靠性。 When stepping into Big Data Era, mobile phone data attract more and more attentions by transportation domain because of its high penetration rate and low collecting cost. Mobile phone operators record temporal and spatial information of users when providing services. This new data stream turns to be a promising resource to estimate trip distribution pattern due to the fact that each record is able to provide the space-time information. This paper proposes a method to estimate OD distribution among urban mega traffic analysis zones based on mobile phone data mining. A case study of San Francisco, US is selected to implement mobile phone data mining-based OD extraction by proposed method. The outcome is further statistically validated by household survey data. Results reveal that the proposed mobile phone data miningbased approach is able to generate a promising result.
出处 《城市交通》 北大核心 2016年第1期37-42,50,共7页 Urban Transport of China
关键词 交通规划 交通需求预测 手机数据 OD分布估计 旧金山市 transportation planning travel demand prediction mobile phone data OD estimation San Francisco
  • 相关文献

参考文献12

  • 1丘建栋,陈蔚,宋家骅,段仲渊,赵再先.大数据环境下的城市交通综合评估技术[J].城市交通,2015,13(3):63-70. 被引量:17
  • 2王璞,黄智仁,龚航.大数据时代的交通工程[J].电子科技大学学报,2013,42(6):806-816. 被引量:19
  • 3Song C,Qu Z,Blumm N,et al.Limits of Predictability in Human Mobility[J].Science,2010,327(5968):1018-1021.
  • 4Eagle N,Pentland A S.Eigenbehaviors:Identifying Structure in Routine[J].Behavioral Ecology and Sociobiology,2009,63(7):1057-1066.
  • 5杨飞.基于手机定位的交通OD数据获取技术[J].系统工程,2007,25(1):42-48. 被引量:49
  • 6Wang P,Hunter T,Bayen A M,et al.Understanding Road Usage Patterns in Urban Areas[J].Scientific Reports,2012,2(12):1-6.
  • 7Wang J,Wei D,He K,et al.Encapsulating Urban Traffic Rhythms into Road Networks[J].Scientific Reports,2014,4(7488):4141.
  • 8Caliper Website.Travel Demand Modeling[EB/OL].[2015-10-05].http://www.caliper.com/TCTravel Demand.htm.
  • 9University of South Florida.State Averages for Private Vehicle Occupancy,Carpool Size and Vehicles Per 100 Workers[EB/OL].[2015-10-05].http://www.nctr.usf.edu/clearinghouse/censusavo.htm.
  • 10United States Department of Transportation.National Household Travel Survey[EB/OL].[2015-10-05].http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/subject_areas/national_household_travel_survey/index.html.

二级参考文献21

  • 1刘明君,郭继孚,高利平,张德欣,毛保华.私人小汽车出行行为特征分析与建模[J].吉林大学学报(工学版),2009,39(S2):25-30. 被引量:21
  • 2陈满堂.关于车牌号OD调查方法的探讨[J].公路,2004,49(9):86-88. 被引量:7
  • 3张卫华,陆化普.城市交通规划中居民出行调查常见问题及对策[J].城市规划学刊,2005(5):86-90. 被引量:34
  • 4杨飞,裘炜毅.基于手机定位的实时交通数据采集技术[J].城市交通,2005,3(4):63-68. 被引量:36
  • 5Kyamakya K,Fuchs S.Road traffic tracking by using location management data in wireless cellular networks[J].ITG-Fachbericht,2006,194:101-107.
  • 6White J,Wells I.Extracting origin destination information from mobile phone data[A].Road Transport Information and Control[C].London:IEE,2002:30-34.
  • 7Asakura Y,Hato E.Tracking survey for individual travel behaviour using mobile communication instruments[J].Transportation Research Part(C),2004,12:273-291.
  • 8Zhao Y L.Mobile phone location determination and its impact on intelligent transportation systems[J].IEEE Transactions on Intelligent Transportation Systems,2000,1(1):55-64.
  • 9Kuwahara M.Fundamental study on the issues of using probe data for OD Estimation and Route Identification[A].Proceedings of 11th World Congress on ITS[C].Nagoya,2004.
  • 10宋清辉.大数据正改变我们的未来[N].中华工商时报,2015-02-27(3).

共引文献82

同被引文献34

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部