期刊文献+

一种改进的SIFT血管图像特征匹配算法 被引量:5

Improved SIFT vascular image feature matching algorithm
在线阅读 下载PDF
导出
摘要 基于特征提取的图像配准在医学领域得到广泛的应用。为了将尺度不变特性变换算法更好地运用到血管图像特征提取与匹配中去,根据血管图像特点,采用曲线拟合确定合适的低对比度阈值,并为了提高SIFT算法的处理速度以及匹配准确度,对SIFT算法的特征描述子进行降维处理,在特征点匹配阶段采用基于模比较的匹配方法,通过对比特征点描述向量模的关系寻找匹配点。实验结果及数据表明:改进后的算法在提高匹配速率和降低误匹配率方面均有提高,对临床血管疾病治疗有重要意义。 Image registration based on the feature extraction is widely used in the medical field.In order to apply the scale-invariant feature transform algorithm into feature extraction and matching of vascular images,a suitable low contrast threshold is determined with the curve fitting method according to the vascular image characteristic,besides,in order to improve the speed and matching accuracy of the SIFT algorithm,conduct dimensionality reduction on the feature descriptors of SIFT algorithm.A method based upon the modulus comparison was used for feature points matching,find the matching points by comparing the relationship between the feature points vector modulus.The experimental results and data show that the improved algorithm has increased the performance in improving the matching rate and lower false matching rate,and it is important for the clinical treatment of vascular disease.
出处 《电子测量技术》 2015年第12期63-66,共4页 Electronic Measurement Technology
关键词 尺度不变特征变换 特征点描述 特征点匹配 模比较 Scale-Invariant Feature Transform feature points descriptor feature matching comparing modulus
  • 相关文献

参考文献11

二级参考文献102

  • 1刘臻,宫鹏,史培军.基于分层多模板匹配的影像自动配准方法研究[J].计算机应用,2005,25(2):322-325. 被引量:7
  • 2朱庆,吴波,万能,徐志祥,田一翔.具有良好重复率与信息量的立体影像点特征提取方法[J].电子学报,2006,34(2):205-209. 被引量:14
  • 3冯林,管慧娟,孙焘,滕弘飞.医学图像非刚性配准研究进展[J].北京生物医学工程,2006,25(4):437-440. 被引量:8
  • 4高峰,文贡坚,吕金建.基于干线对的红外与可见光最优图像配准算法[J].计算机学报,2007,30(6):1014-1021. 被引量:26
  • 5LOWED G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2) :91-110.
  • 6BROWN M, LOWED G. Invariant features from interest point groups[C]. UK: British Machine Vision Conference, 2002:656-665.
  • 7KENNEDY J, EBERHART R. Particle swarm optimization [C]. Australia Perth: IEEE Int Conf on Neural Networks, 1995:1942.
  • 8EBERHART R,KENNEDY J. A new optimizer using particle swarm theory[C]. Japan Nagoya: Proc of the Sixth International Symposium on Micro Machine and Human Science, 1995:39.
  • 9David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 20.
  • 10Rahul Sukthankar, Yan Ke. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattem Recognition. USA: 1EEE, 2004, 1063-6919/04(2004 IEEE): 8.

共引文献196

同被引文献26

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部