期刊文献+

实时多通道数字助听器降噪算法 被引量:5

Real-time noise reduction algorithm for multi-channel digital hearing aids
在线阅读 下载PDF
导出
摘要 在兼顾降噪性能和功耗的基础上,提出了一种实时多通道数字助听器降噪算法.首先,将输入信号分解为16个子带,计算每个子带的声压级,并基于估计的声压级来计算子带噪声和语音概率;然后,利用直接判决方法计算子带信号的先验信噪比和后验信噪比;最后,计算子带增益函数以实现自适应降噪.将该算法与改进谱减法、自适应维纳滤波法和调制深度法进行了比较.结果表明:与其他3种算法相比,在10 d B白噪声的情况下,本文算法输出的平均信噪比减少约3d B,主观语音质量评估得分最多提高0.90;在4种噪声环境下其平均主观语音质量评估得分提高0.41;所提算法采用子带声压级计算取代信号功率谱估计,节省了快速傅里叶变换的计算量,其时延较其他3种算法至少降低50%. A real-time noise reduction algorithm for multi-channel digital hearing aids is proposed based on the balance between noise reduction performance and power consumption. First,the input signal is decomposed into 16 subbands and the sound pressure level( SPL) of each subband is calculated. Based on the estimated SPL,the subband noise and the speech probability are computed.Then,the priori signal noise ratio( SNR) and the posteriori SNR of the subband signal are calculated by the direct decision method. Finally,the gain function is calculated to adaptively reduce noises.And the proposed algorithm is compared with the improved spectral subtraction,adaptive Wiener filter and the algorithm based on the modulation depth. The experimental results showthat compared with the other three algorithms,the average SNR of the proposed algorithm decreases by about 3 d B and the perceptual evaluation of speech quality( PESQ) is at most improved by 0. 90 when the SNR of the white noise is 10 d B. In addition,the average output PESQ is improved by 0. 41 in four kinds of noisy environments. In the proposed algorithm,the estimation of the power spectrum is replaced by the calculation of the subband SPL and the fast Fourier transform computation is reduced,inducing at least 50% decrease of the time-delay compared with the other three algorithms.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期13-17,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61273266 61301219 61375028) 江苏省自然科学基金资助项目(BK20130241)
关键词 降噪 多通道助听器 自适应维纳滤波 声压级 noise reduction multi-channel hearing aid adaptive Wiener filtering sound pressure level
  • 相关文献

参考文献13

  • 1Swanepoel D W, Clark J L, Koekemoer D,et al. Tele-health in audiology : The need and potential to reach un-derserved communities[ J]. International Journal of Au-diology, 2010,49 ( 3 ) : 195 - 202. DOI: 10. 3109/14992020903470783.
  • 2KochKiN S. MarkeTrak Vffl: The key influencing factorsin hearing aid purchase intent [ J]. Hearing Review,2012,19(3) : 12-25.
  • 3Lunner T, SundewalI-Thor6n E. Interactions betweencognition, compression, and listening conditions :Effects on speech-in-noise performance in a two-channelhearing aid [ J ]. Journal of the American Academy ofAudiology, 2007, 18(7) : 604-617.
  • 4Kalluri S,Humes L E. Hearing technology and cogni-tion [J ]. American Journal of Audiology, 2012, 21(2): 338 -343. DOI: 10. 1044/1059-0889(2012/12 -0026).
  • 5Kamkar-Parsi A H,Bouchard M. Instantaneous binauraltarget PSD estimation for hearing aid noise reduction incomplex acoustic environments[ J]. IEEE Transactionson Instrumentation and Measurement, 2011, 60(4):1141-1151.
  • 6Shinn-Cunningham B G, Best V. Selective attention innormal and impaired hearing [ J ]. Trends in Amplifica-tion, 2008, 12 (4): 283 - 299. DOI: 10. 1177/1084713808325306.
  • 7Chung K. Challenges and recent developments in hear-ing aids. Part I. Speech understanding in noise, micro-phone technologies and noise reduction algorithms[ J].Trends in Amplification, 2004, 8(3) : 83 - 124. DOI:10.1177/108471380400800302.
  • 8Boll S F. Suppression of acoustic noise in speech usingspectral subtraction[ J]. IEEE Transactions on Acous-tics ,Speech and Signal Processing, 1979,27(2): 113-120. DOI:10.1109/TASSP. 1979.1163209.
  • 9Ngo K, Spriet A, Moonen M, et al. A combined multi-channel Wiener filter-based noise reduction and dynamicrange compression in hearing aids[J]. Signal Process-ing, 2012,92(2) : 417 -426. DOI: 10.1016/j. sigpro.2011.08.006.
  • 10Hendriks R C, Gerkmann T, Jensen J. DFT-domainbased single-microphone noise reduction for speech en-hancement :A survey of the state of the art [ J ]. Syn-thesis Lectures on Speech and Audio Processing,2013,9(1) : 1-80.

同被引文献53

  • 1Chong K S,Gwee B H,Chang J S.A 16-Channel Low-Power Nonuniform Spaced Filter Bank Core for Digital Hearing Aids[J].Circuits&Systems II Express Briefs IEEE Transactions on,2006,53(9):853-857.
  • 2Schasse A,Martin R,Soergel W,et al.Efficient Implementation of Single-Channel Noise Reduction for Hearing Aids Using a Cascaded Filter-Bank[C]//Speech Communication;10.ITG Symposium;Proceedings of.2012:1-4.
  • 3Schasse A,Gerkmann T,Martin R,et al.Two-Stage Filter-Bank System for Improved Single-Channel Noise Reduction in Hearing Aids[J].IEEE/ACM Transactions on Audio Speech&Language Processing,2015,23(2):383-393.
  • 4Cornelis B,Moonen M,Wouters J.Performance Analysis of Multi-channel Wiener Filter-Based Noise Reduction in Hearing Aids Under Second Order Statistics Estimation Errors[J].IEEE Transactions on Audio Speech&Language Processing,2011,19(5):1368-1381.
  • 5Marquardt D,Hohmann V,Doclo S.Coherence preservation in multi-channel Wiener filtering based noise reduction forbinaural hearing aids[J].IEEE/ACM Transactions on Audio Speech&Language Processing,2013,23(12):8648-8652.
  • 6Marquardt D,Hohmann V,Doclo S.Interaural Coherence Preservation in Multi-Channel Wiener Filtering-Based Noise Reduction for Binaural Hearing Aids[J].IEEE Transactions on Audio Speech&Language Processing,2015,23(12):2162-2176.
  • 7Schepker H,Tran L T T,Nordholm S,et al.Improving adaptive feedback cancellation in hearing aids using an affine combination of filters[C]//IEEE International Conference on Acoustics,Speech and Signal Processing,2016.
  • 8王青云,赵力,赵立业,邹采荣.一种数字助听器多通道响度补偿方法[J].电子与信息学报,2009,31(4):832-835. 被引量:21
  • 9李如玮,鲍长春,窦慧晶.基于小波变换的语音增强算法综述[J].数据采集与处理,2009,24(3):362-368. 被引量:23
  • 10刘志坤,唐小明,朱洪伟.基于改进谱减法的语音增强研究[J].计算机仿真,2009,26(6):363-366. 被引量:15

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部