期刊文献+

同态非局部滤波在激光主动成像散斑抑制中的应用研究 被引量:8

Application of homomorphic non-local filters in speckle noise suppression for laser active imaging
在线阅读 下载PDF
导出
摘要 传统的激光主动成像散斑抑制方法中,局部单像素滤波和变换域滤波难以取得良好的抑制效果,同时容易导致边缘展宽,对图像信息造成破坏。鉴于非局部滤波对加性噪声的优异去噪性能,本文研究了三种具有代表性的非局部滤波方法,并使用半导体泵浦固体脉冲激光器搭建主动成像系统,进行散斑噪声抑制性能的比较。实验表明,采用同态FMPatchGP不仅能够有效抑制散斑噪声,而且能很好地保持边缘信息,同时满足实时性处理的要求,在激光主动照明系统中具有良好的应用前景。 Its difficult for traditional speckle suppression methods such as local single pixel filters and transform-domain filters to obtain good suppression effects in laser active imaging.Meanwhile,these methods would broaden edges,so as to damage the information of the image.In view of the excellent suppression performance of non-local filters for additive noise,three representative nonlocal filtering methods are introduced into laser active imaging.An active imaging system was built up to compare the performance of these three methods in speckle noise suppression using a diode-pumped solid-state pulsed laser.Experimental results indicated that homomorphic FM-PatchGP can not only suppress speckle noise effectively,but also preserve edge information while satisfies the real-time requirement,which leads to a good application prospect in laser active lighting systems.
出处 《液晶与显示》 CAS CSCD 北大核心 2016年第2期193-200,共8页 Chinese Journal of Liquid Crystals and Displays
基金 吉林省科技发展计划(No.20126015)~~
关键词 激光主动成像 散斑噪声 非局部滤波 同态变换 laser active imaging speckle noise non-local filters homomorphic transform
  • 相关文献

参考文献16

  • 1王灿进,孙涛,石宁宁,王锐,王挺峰,王卫兵,郭劲,陈娟.基于双隐含层BP算法的激光主动成像识别系统[J].光学精密工程,2014,22(6):1639-1647. 被引量:31
  • 2付瀚毅,刘伟奇,魏忠伦,康玉思,陶淑苹,冯睿,张大亮.转动随机微透镜阵列对激光显示中散斑的抑制[J].液晶与显示,2015,30(2):359-364. 被引量:6
  • 3DA CUNHA A L, ZHOU J P, DO M N. The nonsubsampled contourlet transform: Theory, design, and applica- tions[J]. IEEE Transactions on Image Processing, 2006, 15(10) :3089-3101.
  • 4GUERRERO-COLON J A, PORTILLA J. Two-level adaptive denoising using Gaussian scale mixtures in overcom- plete oriented pyramids[C]. Proceedings of IEEE International Conference on Image Processing, Genova: IEEE, 2005, 1: 105-108.
  • 5AHARON M, ELAD M, BRUCKSTEIN A M. K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation [J]. IEEE Transactions on signal Processing, 2006, 54(11): 4311-4322.
  • 6FOI A, KATKOVNIK V, EGIAZARIAN K. Pointwise shape-adaptive DCT for high-quality denoising and de- blocking of grayscale and color images[J]. IEEE Transactions on Image Processing, 2007, 16(5): 1395-1411.
  • 7BUADES A, COLL B. A non-local algorithm for image denoising[C]. IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA:IEEE, 2005, 2: 60-65.
  • 8DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filte ring[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
  • 9CHEN X G, ANG S B, YANG J, et al. Fast patch-based denoising using approximated patch geodesic paths[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Portland, OR: IEEE, 2013: 1211-1218.
  • 10刘巧红,李斌,林敏.结合复方向滤波器组高斯尺度混合模型及非局部均值滤波的图像去噪[J].光学精密工程,2014,22(10):2806-2814. 被引量:6

二级参考文献83

共引文献80

同被引文献99

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部