期刊文献+

机翼结构重量预测的多学科分析优化方法 被引量:13

Weight prediction method of wing-structure using multidisciplinary analysis and optimization
原文传递
导出
摘要 为了克服现有机翼结构重量计算方法的局限性,提出一种基于多学科分析优化的机翼结构重量计算方法。以客机机翼为例,阐述整个计算流程。计算流程的关键步骤包括机翼外形和结构参数化建模、气动分析模型自动生成与外形优化、结构有限元模型的自动生成和结构优化。应用CAD软件CATIA的二次开发方法,实现机翼外形几何模型、结构布置几何模型和气动分析模型的自动生成;应用MSC.Patran的PCL编程技术,实现结构有限元模型的自动生成;应用等效刚度和等效强度方法,提高结构有限元模型自动生成的稳健性,缩短结构分析和优化的计算时间;应用多学科集成和优化技术,建立机翼结构重量预测的计算平台,实现整个计算过程的自动化。算例表明这种方法稳健、有效,可快速地分析机翼外形参数与结构重量之间的关系,分析不同展向载荷分布和不同选材方案对机翼结构重量的影响。 A wing-structure weight prediction method using multidisciplinary analysis and optimization is proposed to over- come the limitations of the current predictions of wing-structure weight. The wing of a short/medium haul transport was used as an example to illustrate the procedure of the method. The key steps of the method include parametric modeling for wing configuration and structural layout, automatic generation of wing aerodynamic model, aerodynamic optimization, automatic generation of the wing structural finite element model and wing structural optimization. The parametric modeling for the wing configuration and structural layout, and automatic generation of aerodynamic model was implemented by running VB codes in CATIA. The automatic generation of wing structural finite element model was implemented by running MSC. Patran Command Language (PCL~) codes. The equivalent stiffness and strength method was used to enhance the robustness of the finite ele- ment model generation of the wing structure and reduce the computational burden of the structural analysis and optimization. A computational framework for the wing-structure weight prediction was established using multidisciplinary integration and optimization, and the overall process for the wing-structure weight computation was carried out automatically. The example indicates that the method is robust and efficient, and is able to rapidly obtain the impacts of wing configurations, spanwise load distributions and structural materials on the wing-structure weights.
出处 《航空学报》 EI CAS CSCD 北大核心 2016年第1期235-243,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11432007) 江苏省高校优势学科建设工程资助项目~~
关键词 机翼 重量预测 多学科设计优化 有限元方法 等效方法 wing weight prediction multidisciplinary design optimization finite element method equivalent method
  • 相关文献

参考文献21

  • 1HOWE D. The prediction of aircraft wing mass[J]. Pro- ceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1996, 210(2) : 135- 145.
  • 2KELM R, LfiPPLE M, GRABIETZ M. Wing primary structure weight estimation of transport aircrafts in the pre-development phase, SAWE Paper No. 2283 [R]. La Mesa, California: SAWE,1995.
  • 3ARDERMA M D, CHANBERS M C, PATRON A P. Analytical fuselage and wing weight estimation of trans- port aircraft, NASA-TM-110392 [R]. Washington D. C. : NASA, 1996.
  • 4AJAJ R M, SMITH D, ISIKVEREN A T, et al. A con- ceptual wing-box weight estimation model for transport aircraft[J]. Aeronautical Journal, 2013, 117(1191): 533- 551.
  • 5ELHAM A, VAN TOOREN M J L. Effect of wing-box structure on the optimum wing outer shape[J]. Aeronau- tical Journal, 2013, 118(1199): 1-30.
  • 6GILES G L. Equivalent plate modeling for conceptual de- sign of aircraft wing structures: NASA TM 111263 [R]. Washington D. C..- NASA, 1995.
  • 7OLTMANN K M. Virtual engineering models for aircraft structure weight estimation, SAWE Paper No. 2283 [R]. La Mesa, California: SAWE , 2007.
  • 8WENZELJ, SINAPIUS M, GABBERT U. Primary structure mass estimation in early phases of aircraft devel- opment using the finite element method[J]. CEAS Aero- nautical Journal, 2012, 3(1): 35-44.
  • 9JEMITOLA P O, MONTERZINO G, FIELDING J. Wing mass estimation algorithm for medium range box wing aircraft [J]. Aeronautical Journal, 2013, 117 (1189) : 329-340.
  • 10余雄庆.飞机总体多学科设计优化的现状与发展方向[J].南京航空航天大学学报,2008,40(4):417-426. 被引量:48

二级参考文献133

共引文献88

同被引文献69

引证文献13

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部