期刊文献+

一种基于多尺度特征簇的舰船目标快速定位与识别方法 被引量:5

A Method for Fast Ship Detection and Recognition in Sea-Sky Background Based on Multi-scale Feature Cluster
原文传递
导出
摘要 针对海天背景下彩色近景舰船图像,采用了一种基于多尺度特征簇的舰船目标快速定位与识别方法,此方法对旋转具有鲁棒性,对光照具有良好的适应性。借鉴Canny边缘检测与图像金子塔及最小生成树聚类算法的思想,设计了一套可适应目标多尺度特性并提高Canny边缘检测自适应性的"特征簇"目标定位算法,结合概率树分类器与二维主成分分析算法,可对多视角、多目标类型舰船目标进行识别,并根据全概率公式评估识别结果。 This paper approaches the problem of detecting and recognizing ship targets in color images based on sea-sky background.We propose a method based on multi-scale feature cluster robust to the changes in scale,orientation and illumination of the image and can fast detect and recognize ship targets.For ship detection,a"group feature"detecting method that can adapt to the multi-scale of the target and improve the adaptive of the canny edge detection is proposed that combines the canny edge detection algorithm,image pyramid algorithm and minimum spanning tree clustering algorithm.For ship recognition,a"probability tree"recognition method that can recognize a ship target in multi-angle,multi-target approach is proposed,combining with the probability tree classifier and principal component analysis algorithm.The recognition results are calculated by the total probability formula.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第1期111-116,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41271454)~~
关键词 舰船目标检测 目标定位与识别 彩色图像处理 ship target detection object detection and recognition color image processing
  • 相关文献

参考文献22

  • 1Corbane C, Najman L, Pecoul E, et al. A Complete Processing Chain for Ship Detection Using Optical Satellite Imagery [J]. International Journal of Re- mote Sensing, 2010, 31(22): 5 837-5 854.
  • 2Howell C, Power D, Lynch M, et al. Dual Polari- zation Detection of Ships and Icebergs: Recent Re- sults with Envisat ASAR and Data Simulations of RADARSAT-2[C]. IGARSS, Boston, USA, 2008.
  • 3Ouchi K. Ship Detection by ALOS-PALSAR: An Overview[C]. The 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, Korea (South), 2011.
  • 4王世庆,金亚秋.SAR图像船行尾迹检测的Radon变换和形态学图像处理技术[J].遥感学报,2001,5(4):289-294. 被引量:34
  • 5袁修孝,吴颖丹.缺少控制点的星载SAR遥感影像对地目标定位[J].武汉大学学报(信息科学版),2010,35(1):88-91. 被引量:20
  • 6Argenti F, Benelli G, Garzelli A, et al. Automatic Ship Detection in SAR images [C]. International Conference on Radar, Brighton, UK, 1992.
  • 7Grasso R, Mirra S, Baldacei A, et al. Performance Assessment of a Mathematical Morphology Ship De- tection Algorithm for SAR Images Through Com- parison with AIS Data[C]. The Ninth International Conference on Intelligent Systems Design and Ap- plications, Pisa, Italy, 2009.
  • 8Liu C, Vachon P W, Geling G W. Improved Ship Detection Using Polarimetric SAR Data [C]. IGARSS, Anchorage, AK, USA, 2004.
  • 9Withagen P J, Schutte K, Vossepoel A M, et al. Automatic Classification of Ships from Infrared (FLIR) Images[C]. SPIE AeroSense, Orlando,USA, 1999.
  • 10刘松涛,王慧丽,殷福亮.基于图割和模糊连接度的交互式舰船红外图像分割方法[J].自动化学报,2012,38(11):1735-1750. 被引量:10

二级参考文献97

共引文献165

同被引文献51

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部