期刊文献+

Al含量对Fe-Mn-Al-C系低密度钢层错能及形变孪晶的影响 被引量:14

Influence of aluminum content on stacking fault energy and mechanical twin of low-density Fe-Mn-Al-C steels
原文传递
导出
摘要 研究了合金元素Al对3种不同Al含量的Fe-28Mn-x Al-1C(x=8,10,12)系低密度钢层错能的影响。结果表明,3种实验钢的层错能范围为67.76~90.64 m J/m^2,Al对层错能的影响呈多项式分布。与28Mn-10Al及28Mn-8Al合金相比,28Mn-12Al合金层错能较高,抗拉强度高但伸长率低,在相同变形量下,28Mn-8Al与28Mn-10Al合金均出现了孪晶组织,且28Mn-8Al中孪晶更明显,而28Mn-12Al合金中未发现孪晶。3种合金的变形机制均为平面滑移变形,这归因于Fe-Mn-Al-C系合金中存在的短程有序会导致"滑移面软化现象",使高层错能的28Mn-12Al合金变形机制也为平面滑移。 Influence of Al on stacking fault energy( SFE) of low-density Fe-28Mn-x Al-1C( x = 8,10 and 12) system alloys was studied.The results show that the SFE of the three experimental steels is in the range of 67. 76-90. 64 m J / m^2 and the influence of Al content on the SFE can be described by a polynomial. The tensile and yield strength of 28Mn-12 Al steel with higher SFE is better than that of 28Mn-8Al and 28Mn-10 Al steels while the elongation is on the contrary. Under the same deformation,twins exist in the 28Mn-8Al and 28Mn-10 Al alloys,and more twins are observed in the 28Mn-8Al steel,while twins are not found in the 28Mn-12 Al alloy. Deformation mechanism is dislocation planar glide in the three alloys and the planar glide mode of deformation is likely to be attributed to "the glide softening phenomenon"associated with short range ordering,that is why the deformation mechanism of 28Mn-12 Al with high SFE is planar glide.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2015年第12期128-133,共6页 Transactions of Materials and Heat Treatment
基金 中国博士后科学基金(2014M561648)
关键词 高含Al低密度钢 层错能 变形机制 形变孪晶 low-density steel with high Al content stacking fault energy deformation mechanism mechanical twin
  • 相关文献

参考文献21

  • 1李华英,丁桦,李昊泽,邱春林.两种不同层错能TWIP钢的变形行为及组织演变[J].材料与冶金学报,2012,11(3):183-187. 被引量:3
  • 2曾敬山,熊杰,史文,李麟.层错能对Fe-Mn-C系TRIP/TWIP钢变形机制影响[J].材料科学与工艺,2013,21(2):72-76. 被引量:6
  • 3Pierce D T,Jime'nez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/e-martensite interfacial energies in Fe-Mn-(AI-Si) steels investigated by experiment and theory[ J]. Acta Materialia,2014,68( 15 ) :238 -253.
  • 4Yooa J D, Hwangb S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9AI-0. 8C steel[ J]. Materials Science and Engineering A, 2009,508 ( 1/2 ) : 234 - 240.
  • 5Hwangb S W,Ji J H, Leeb E G, et al. Tensile deformation of a duplex Fe-20Mn-9A1-0.6C steel having the reduced specific weight[ J]. Materials Science and Engineering A ,2011,528 ( 15 ) :5196 - 5203.
  • 6Yooa J D, Park K T. Microband-induced plasticity in a high Mn-AI-C light steel[ J]. Materials Science and Engineering A ,2008,496 (1/2) :417 -424.
  • 7Choi K,Seo C H,Lee H, et al. effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9AI-0. 8C steel [ J]. Scripta Materialia,2010,63 ( 10 ) : 1028 - 1031.
  • 8Seol J B,Raabe D, Choi P, et al. Direct evidence for the formation of ordered carbides in aferrite-based low-density Fe-Mn-A1-C alloy studied by transmission electron microscopy and atom probe tomography [ J ~. Scripta Materialia,2013,68 (6) :348 - 353.
  • 9Guticrrez-Urrutia 1, Raabe D. Influence of A1 content and precipitation state on the mechanical behavior of austenitic high~Mn low-density steels[ J ]. Scripta Materialia, 2013,68 ( 6 ) : 343 - 347.
  • 10Koyama M, Springer H, Merzlikin S V,et al. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe-Mn-AI-C light weight austenitic steel[ J]. International Journal of Hydrogen Energy,2014,39 ( 9 ) :4634 - 4646.

二级参考文献33

  • 1唐荻,米振莉,陈雨来.国外新型汽车用钢的技术要求及研究开发现状[J].钢铁,2005,40(6):1-5. 被引量:184
  • 2代永娟,米振莉,唐荻,江海涛,李慎升.Fe-Mn-C系TWIP钢的组织和性能[J].上海金属,2007,29(5):132-136. 被引量:36
  • 3MI Z L,TANG D, YAN L ,et al. High strength and high plasticity TWIP steel for modem vehicle [ J ]. Ma- terial Science and Tectmology, 2005,4 ( 21 ) : 451 - 454.
  • 4GRASSEL O, KRUGER L, FROMMEYER G. High strength Fe - Mn - ( AI, Si ) TRIP/TWIP steels devel- opment-properties-application [ J ]. Int J. Plasticity, 2000,16:1391 - 1409.
  • 5ALLAIN S, CHATEAU J P, BOUAZIZ O,et al. Corre- lations between the calculated stacking fault energy and the plasticity mechanisms in Fe - Mn - C alloys [ J ]. Materials Science and Engineering A, 2004, 387 - 389 : 158 - 162.
  • 6DUMAY A, CHATEAU J P, ALLAIN S,et al. Influence of addition elements on the stacking-fauh energy and mechanical properties of an austenitic Fe - Mn - C steel[ J ]. Materials Science and Engineering A,2008,483 - 484 : 184 - 187.
  • 7YANG E, ZIqROB H, MCDER.MAID J. The effecl of carbon content on the microslruclure and meehanical properties of high-Mn Steels [ C ]// MS&TQ. Pills- burgh, PA: MANEY PUBLISHING, 2009, 1914 - 1925.
  • 8DING Hao, DING Hua, SONG Dan ,et al. Strain hard- ening behavior of a TRIP/T WIP steel with 18.8% Mn[ J]. Materials Science and Engineering A ,2011 , 528:868 - 873.
  • 9SIPOS K, PEMY L, PINEAU A. Influence of auslenite pre-deformation on mechanieal priperties and strain- induced martensitie transformations of a high manga- nese steel[ J]. Metall. Trans. 1976, A7:857 - 864.
  • 10熊荣刚,符仁钰,黎倩,张梅,李麟.TWIP钢的拉伸应变硬化行为[J].钢铁,2007,42(11):61-64. 被引量:12

共引文献37

同被引文献87

引证文献14

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部