期刊文献+

植物乳杆菌在不同盐质量浓度下生长至对数期中期全蛋白SDS-PAGE分析 被引量:1

SDS-PAGE Analysis of Total Proteins in Lactobacillus plantarum in the Middle Logarithmic Growth at Different Salt Concentrations
在线阅读 下载PDF
导出
摘要 以耐盐植物乳杆菌FS5-5为研究对象,采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳技术构建了菌株在Na Cl质量浓度分别为0、3、6、9 g/100 m L的培养基中生长至对数期中期的全蛋白表达图谱。通过比较分析,选取了6个差异蛋白质条带,并采用液相色谱-质谱/质谱联用对差异蛋白质条带进行质谱分析。结果表明:1号样品条带鉴定得到6种蛋白;2号样品条带鉴定得到11种蛋白;3号样品条带鉴定得到9种蛋白;4号样品条带鉴定得到4种蛋白;5号样品条带鉴定得到15种蛋白;6号样品条带鉴定得到15种蛋白。去除相同的蛋白,共有45种蛋白得到鉴定。这些蛋白大致可以分为4类:与蛋白质合成有关的蛋白25种;与代谢相关的蛋白10种;与核苷酸合成有关的蛋白8种;未知功能蛋白2种。可能由于这些蛋白的表达发生变化,才导致菌体中蛋白质合成、能量代谢、DNA复制能够正常进行,最终使植物乳杆菌FS5-5能够更好地在盐环境下生存下去。 In this study, the total protein profiles of Lactobacillus plantarum FS5-5 with salt tolerance grown in media with Na Cl concentrations of 0, 3, 6, and 9 g/100 m L to the middle logarithmic phase were established and compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE), and six different protein bands were selected for analysis by liquid chromatography-tandem mass spectrometry(AB Sciex 4000 QTRAP LC/MS/MS). Results showed that 6, 11, 9, 4, 15 and 15 proteins were contained in bands 1, 2, 3, 4, 5 and 6, respectively. Totally 45 proteins were identified. These proteins could be divided into 4 groups including 25 proteins involved in protein synthesis, 10 proteins associated with metabolism, 8 proteins associated with nucleotide synthesis, and 2 proteins with unknown functions. The differential expression of these proteins could lead to bacterial protein synthesis, energy metabolism and DNA replication, and eventually enable Lactobacillus plantarum FS5-5 to better survive in salt stress environment.
出处 《食品科学》 EI CAS CSCD 北大核心 2015年第23期155-161,共7页 Food Science
基金 国家自然科学基金面上项目(31000805 31471713) 辽宁省农业领域青年科技创新人才培养资助计划项目(2014048) 辽宁省高等学校优秀人才支持计划项目(LR2015059) 江苏省博士后科研资助计划项目(1402071C) 沈阳农业大学“天柱山英才支持计划”项目
关键词 植物乳杆菌FS5-5 盐胁迫 十二烷基硫酸钠-聚丙烯酰胺凝胶电泳 差异蛋白 Lactobacillus plantarum FS5-5 salt stress sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) different proteins
  • 相关文献

参考文献23

  • 1BOLOTIN A, WINCKER P, MAUGER S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403[J]. Genome Research, 2001, 11(5): 731-739.
  • 2乌日娜,孙志宏,张文羿,陈永福,刘文俊,钟智,张和平.蛋白质组学在乳酸菌应激反应机制研究中的应用[J].食品科学,2013,34(1):324-327. 被引量:5
  • 3da SILVA SABO S, VITOLO M, JOSI~ MANUEL DOMINGUEZ GONZ,~LEZ J M D, et al. Overview of Lactobacillus plantarumas a promising bacteriocin producer among lactic acid bacteria[J]. Food Research International, 2014, 64(10): 527-536.
  • 4VERONICA F, ANDREA B, JORGE R, et al. Resistance of functional Lactobacillus plantarum strains against food stress conditions[J]. Food Microbiology, 2015, 48(6): 63-71.
  • 5WU Rina, WU Junrui, YUE Xiqing, et al. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei-Zhang to low acid stress[J]. International Journal of Food Microbiology, 2011, 147(3): 181-187.
  • 6JOHANNA K, KATI L, KERTTU K, et al. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG[J]. Journal of Proteomics, 2012, 75(4): 1357-1374.
  • 7LEE J Y, PAJARILLO E A B, KIM M J. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR[J]. Journal of Proteome Research, 2013, 12(1): 432-443.
  • 8BELFIORE C, FADDA S, RAYA R, et al. Molecular basis of the adaption of the anchovy isolate Lactobacillus sakei CRL1756 to salted environments through a proteomic approach[J]. Food Research International, 2013, 54(1): 1334-1341.
  • 9ZHAO Shanshan, ZHANG Qiuxiang, HAO Guangfei, et al. The protective role of glycine betaine in Lactobacillus plantarum ST-III against salt stress[J]. Food Control, 2014, 44: 208-213.
  • 10Li Chun,Liu Li-bo,Sun Di,Chen Jing,Liu Ning.Response of Osmotic Adjustment of Lactobacillus bulgaricus to NaCl Stress[J].Journal of Northeast Agricultural University(English Edition),2012,19(4):66-74. 被引量:3

二级参考文献131

  • 1刘小莉,董明盛.蛋白质组学在乳及乳制品特性研究中的应用[J].中国乳品工业,2005,33(11):34-37. 被引量:6
  • 2乌日娜,武俊瑞,孟和,张和平.乳酸菌酸胁迫反应机制研究进展[J].微生物学杂志,2007,27(2):62-66. 被引量:10
  • 3Iyer R R, Pluciennik A, Burdett V, et al. DNA mismatch repair: functions and mechanisms. Chem Rev, 2006, 106:302-323.
  • 4Mendillo M L, Putnam C D, Kolodner R D. Escherichia coli MutS tetramerization domain structure reveals that stable dimers but not tetramers are essential for DNA mismatch repair in vivo. J Biol Chem, 2007, 282:16345-16354.
  • 5Manelyte L, Urbanke C, Giron-Monzon L, et al. Structural and functional analysis of the MutS C-terminal tetramerization domain. Nucleic Acids Res, 2006, 34:5270-5279.
  • 6Biswas I, Ban C, Fleming K G, et al. Oligomerization of a MutS mismatch repair protein from Thermus aquaticus. J Biol Chem, 1999, 274: 23673-23678.
  • 7Miguel V, Pezza R J, Argarana C E. The C-terminal region of Escherichia coli MutS and protein oligomerization. Biochem Biophys Res Commun, 2007, 360:412-417.
  • 8Li G M. DNA mismatch repair and cancer. Front Biosci, 2003, 8:d997-1017.
  • 9Lutzen A, de Wind N, Georgijevic D, et al. Functional analysis of HNPCC-related missense mutations in MSH2. Mutat Res, 2008, 645: 44-55.
  • 10Dougherty M J, Arnold F H. Directed evolution: new parts and optimized function. Curt Opin Biotechnol, 2009, 20:486-491.

共引文献41

同被引文献12

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部