期刊文献+

多酶催化剂的制备及其应用 被引量:3

Preparation of multi-enzyme complexes and their applications in cascade reactions
原文传递
导出
摘要 在生物催化中,很多的复杂反应都需要2个或者多个酶的级联反应催化得到,近几年多酶生物催化开始逐渐取代单酶和细胞发酵,成为酶工程发展的一个热点研究方向。本文对多酶催化剂的制备形式和原理及超分子酶在级联催化中的应用进行了综述。其中超分子酶的制备技术主要包括非定向的固定化技术和定向的基因融合技术、纤维小体支架技术和DNA支架技术等。 In bio-catalytic reactions,many cascade reactions need two or more enzymes to catalyze the reaction. In recent years,multi-enzyme reactions have begun to replace single enzyme and cell catalyzed reactions,and have becomes an important research direction in the development of enzyme engineering. In this paper,the methods and theories of preparation of multi-enzyme complexes and their applications in cascade reactions are reviewed. Methods of preparation of supramolecular enzymes discussed include undirected immobilization and directed gene fusion,cellulosome scaffolds and DNA scaffolds.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期1-8,共8页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家"973"计划(2013CB733600)
关键词 级联催化 超分子酶 enzyme cascade reaction supramolecular enzyme
  • 相关文献

参考文献10

  • 1Jesu Arockiaraj,Annie J. Gnanam,Rajesh Palanisamy,Prasanth Bhatt,Venkatesh Kumaresan,Mukesh Kumar Chaurasia,Mukesh Pasupuleti,Harikrishnan Ramaswamy,Abirami Arasu,Akila Sathyamoorthi.A cytosolic glutathione s-transferase, GST- theta from freshwater prawn Macrobrachium rosenbergii : molecular and biochemical properties[J].Gene.2014
  • 2Hiroshi Watanabe,Hidehiko Hirakawa,Teruyuki Nagamune.Phosphite‐driven Self‐sufficient Cytochrome P450[J].ChemCatChem.2013(12)
  • 3Ofer Idan,Henry Hess.Engineering enzymatic cascades on nanoscale scaffolds[J].Current Opinion in Biotechnology.2013
  • 4Hidehiko Hirakawa,Ayano Kakitani,Teruyuki Nagamune.Introduction of selective intersubunit disulfide bonds into self‐assembly protein scaffold to enhance an artificial multienzyme complex’s activity[J].Biotechnol Bioeng.2013(7)
  • 5Chun You,Suwan Myung,Y.‐H. Percival Zhang.Facilitated Substrate Channeling in a Self‐Assembled Trifunctional Enzyme Complex[J].Angew Chem Int Ed.2012(35)
  • 6Carlos M.G.A. Fontes,Harry J. Gilbert.Cellulosomes: Highly Efficient Nanomachines Designed to Deconstruct Plant Cell Wall Complex Carbohydrates[J].Annual Review of Biochemistry.2010
  • 7Makoto Yoshimoto,Noriyuki Takaki,Miku Yamasaki.Catalase-conjugated liposomes encapsulating glucose oxidase for controlled oxidation of glucose with decomposition of hydrogen peroxide produced[J].Colloids and Surfaces B: Biointerfaces.2010(2)
  • 8Robert J Conrado,Jeffrey D Varner,Matthew P DeLisa.Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy[J].Current Opinion in Biotechnology.2008(5)
  • 9Linqiu Cao,Luuk van Langen,Roger A Sheldon.Immobilised enzymes: carrier-bound or carrier-free?[J].Current Opinion in Biotechnology.2003(4)
  • 10Christof M. Niemeyer,Larissa Boldt,Bülent Ceyhan,Dietmar Blohm.DNA-Directed Immobilization: Efficient, Reversible, and Site-Selective Surface Binding of Proteins by Means of Covalent DNA–Streptavidin Conjugates[J].Analytical Biochemistry.1999(1)

同被引文献62

  • 1Wang Y,San K Y,Bennett G N.Cofactor engineering for advancing chemical biotechnology.Curr Opin Biotechnol,2013,24:994-999.
  • 2Belsare K D,Ruff A J,Martinez R,et al.P-Link:a method for generating multicomponent cytochrome P450 fusions with variable linker length.Biotechniques,2014,57:13-20.
  • 3Way J C,Collins J J,Keasling J D,et al.Integrating biological redesign:where synthetic biology came from and where it needs to go.Cell,2014,157:151-161.
  • 4Slusarczyk A L,Lin A,Weiss R.Foundations for the design and implementation of synthetic genetic circuits.Nat Rev Genet,2012,13:406-420.
  • 5Orth J D,Conrad T M,Na J,et al.A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011.Mol Syst Biol,2011,7:535.
  • 6Zomorrodi A R,Maranas C D.Improving the iMM904 S.cerevisiae metabolic model using essentiality and synthetic lethality data.Bmc Syst Biol,2010,4:178.
  • 7de Graef M R,Alexeeva S,Snoep J L,et al.The steady-state internal redox state(NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli.J Bacteriol,1999,181:2351-2357.
  • 8Chen X L,Li S B,Liu L M.Engineering redox balance through cofactor systerms.Trends Biotechnol,2014,32:337-343.
  • 9San K Y,Bennett G N,Berrios-Rivera S J,et al.Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli.Metab Eng,2002,4:182-192.
  • 10Liang L,Liu R,Chen X,et al.Effects of overexpression of NAPRTase,NAMNAT,and NAD synthetase in the NAD(H) biosynthetic pathways on the NAD(H) pool,NADH/NAD+ ratio,and succinic acid production with different carbon sources by metabolically engineered Escherichia coli.Biochem Eng J,2013,81:90-96.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部