期刊文献+

N掺杂石墨烯量子点的制备及其光催化降解性能 被引量:6

Preparation of N-doped graphene quantum dots and their photocatalytic degradation activity for methylene blue
在线阅读 下载PDF
导出
摘要 石墨烯量子点(GQDs)作为绿色、经济的新型碳质纳米材料在有机污染物的降解、能源利用方面有着广泛的应用前景。以柠檬酸为碳源,尿素作为氮源,通过水热法制备出尺寸均匀、高荧光的N掺杂石墨烯量子点(N-GQDs)。通过X射线衍射、拉曼光谱、透射电子显微镜、荧光光谱、紫外可见吸收光谱等手段对N-GQDs的晶型结构、微观形貌、表面官能团分布和光物理性能进行表征。通过MTT法对N-GQDs的毒性进行检测,又通过对亚甲基蓝(MB)的光催化降解考察样品的光催化性能。结果表明,制备的N-GQDs尺寸均匀、荧光强度高且毒性低。由于N原子的成功掺杂,N-GQDs作为光催化剂在可见光下对MB进行光催化降解比MB的自身降解更快,在短时间内(120 min)降解率可以达到82.5%。 Nitrogen-doped graphene quantum dots(N-GQDs) were synthesized by the hydrothermal method,using citric acid and urea as the carbon and nitrogen sources,respectively.X-ray diffraction,Raman spectroscopy,transmission electron microscopy,fluorescence spectroscopy and UV-visible absorption spectroscopy were used to characterize their microstructure and photophysical properties.The cytotoxicity of the N-GQDs was tested using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide.The photocatalytic degradation activity for methylene blue(MB) was investigated under visible light.Results show that the N-GQDs have a narrow size distribution,a high fluorescence and a low cytotoxicity.Photocatalytic degradation rate of the N-GQDs for MB reaches 82.5%under visible light irradiation for 120 min.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2015年第6期545-549,共5页 New Carbon Materials
基金 国家自然科学基金(51172152 51242007 51572184)~~
关键词 N掺杂石墨烯量子点 荧光特性 光催化降解 微观结构 Nitrogen doped graphene quantum dots(N-GQDs) Fluorescent property Photocatalytic degradation Microstructure
  • 相关文献

参考文献21

  • 1Zhang R, He S, Zhang C, et al. Three-dimensional Fe-and N-incorporated carbon structures as peroxidase mimics for fluorescence detection of hydrogen peroxide and glucose[J]. Journal of Materials Chemistry B, 2015, 3(20): 4146-4154.
  • 2Sadhukhan M, Barman S. Bottom-up fabrication of two-dimensional carbon nitride and highly sensitive electrochemical sensors for mercuric ions[J]. J Mater Chem a, 2013, 1(8): 2752-2756.
  • 3Tian J, Liu Q, Asiri A M, et al. Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose[J]. Nanoscale, 2013, 5(23): 11604-11609.
  • 4Denis P A, Faccio R, Mombru A W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur[J]. Chem Phys Chem, 2009, 10(4): 715-722.
  • 5Zheng F, Wang Z, Chen J, et al. Synthesis of carbon quantum dot-surface modified P25 nanocomposites for photocatalytic degradation of p-nitrophenol and acid violet 43[J]. RSC Advances, 2014, 4(58): 30605-30609.
  • 6Di J, Xia J, Ji M, et al. The synergistic role of carbon quantum dots for the improved photocatalytic performances of Bi2MoO6[J]. Nanoscale, 2015.
  • 7Saud P S, Pant B, Alam A M, et al. Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment[J]. Ceramics International, 2015, 41(9): 11953-11959.
  • 8Gupta B K, Kedawat G, Agrawal Y, et al. A novel strategy to enhance ultraviolet light driven photocatalysis from graphene quantum dots infilled TiO2 nanotube arrays[J]. RSC Advances, 2015, 5(14): 10623-10631.
  • 9Baker S N, Baker G A. Luminescent carbon nanodots: Emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49(38): 6726-6744.
  • 10Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26): 4430-4434.

同被引文献38

  • 1孙剑飞,翟玉春,石照信,谷亨达,范文玉.TiO_2光催化材料掺杂改性的研究进展[J].应用化工,2006,35(12):966-971. 被引量:6
  • 2X. Y. Xum, R. Ray, Y. L. Gu, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12 736-12 737.
  • 3C. X. Wang, Z. Z. Xu, H. Cheng, et al. A hydrothermal route to water-stable luminescent carbon dots as nanose- nsors for pH and temperature[J]. Carbon, 2015, 82: 87-95.
  • 4Y. Choi, S. Kirn, M. H. Choi, et al. Highly Biocompatible Carbon Nanodots for Simultaneous Bioimaging and Targeted Photodynamic Therapy In Vitro and In Vivo[J]. Advanced Functional Materials, 2014, 24(37): 5 781-5 789.
  • 5P. S. Saud, t3. Pant, A. M. Alam, et al. Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment[J]. Ceramics International, 2015, 41(9): 11 953-11 959.
  • 6Z. T. Fan, S.H. Li, F. L. Yuan, et al. Fluorescent graphene quantum dots for biosensing and bioimaging[J]. Rsc Advances, 2015, 5(25): 19773-19789.
  • 7J. Peng, W. Gao, B. K. Gupta, et al. Graphene Quantum Dots Derived from Carbon Fibers[J]. Nano Letters, 2012, 12(2): 844-849.
  • 8S. J. Zhuo, M. W. Shao, S. T. Lee. Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis[J]. Acs Nano, 2012, 6(2): 1 059-1 064.
  • 9C. T. Chien, S. S. Li, W. J. Lai, et al. Tunable Photolu- minescence from Graphene Oxide[J]. Angewandte Chemic-International Edition, 2012, 51 (27): 6 662-6 666.
  • 10Y. P. Sun, B. Zhou, Y. Lin, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24): 7 756-7 757.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部