期刊文献+

10MJ高温超导环形磁体电磁优化设计

Electromagnetic optimal design of 10MJ HTS toroidal magnets
原文传递
导出
摘要 随着超导技术的发展,大容量、高场强的高温超导磁体已成为未来超导磁体的主要发展方向。文中以10MJ高温超导环形磁体为研究对象,以磁体的总用线量为优化目标,采用二代YBCO带材进行了环形磁体的电磁优化设计,利用遗传算法和有限元建模获得了磁体的最小总用线量,分析了在满足磁体储能量的情况下,线圈的内直径和线圈个数对环形磁体临界电流、总用线量的影响。 With the development of superconducting technology,HTS magnets with large storage energy and high magnetic field have become the future developing direction of HTS magnets. In this paper,a 10 MJ HTS toroidal magnet was chosen as the research target,and the optimization goal was to minimize the total length of HTS tapes. Electromagnetic optimal design of the toroidal magnet was carried out using 2G-YBCO tapes to get the least length of HTS tapes based on genetic algorithm and FEM modeling. Then,effects of the inner diameter and number of the coils on the critical current and the total length of tapes were analyzed under the premise that the storage energy was satisfied.
出处 《低温与超导》 CAS 北大核心 2015年第12期46-50,共5页 Cryogenics and Superconductivity
关键词 高温超导环形磁体 总用线量 电磁设计 遗传算法 有限元建模 HTS toroidal magnet The total length of tapes Electromagnetic design Genetic algorithm FEM modeling
  • 相关文献

参考文献6

  • 1Ali M,Wu B, Dougal R A. An overview of SMES appli- cations in power and energy systems [J]. Sustainable Energy, IEEE Transactions on, 2010,1 ( 1 ) :38 -47.
  • 2Salih E, Lachowicz S, Bass O,et al. Application of a su- perconducting magnetic energy storage unit for power systems stability improvement[C]. Green Energy, 2014 International Conference on. IEEE, 2014,267 - 272.
  • 3周林,黄勇,郭珂,冯玉.微电网储能技术研究综述[J].电力系统保护与控制,2011,39(7):147-152. 被引量:275
  • 4Dai T,Tang Y,Shi J,et al. Design of a 10 MJ HTS su- perconducting magnetic: energy storage magnet [J]. Ap- plied Superconductivity,IEEE Transactions on, 2010,20 (3) :1356 - 1359.
  • 5http ://www. superpower - inc. com/.
  • 6刘豪,唐跃进,任丽,邓序之,张意.高温超导环向场D型线圈的电磁设计[J].低温与超导,2014,42(5):28-31. 被引量:5

二级参考文献42

  • 1唐西胜,齐智平.基于超级电容器储能的独立光伏系统[J].太阳能学报,2006,27(11):1097-1102. 被引量:31
  • 2Carr J A, Balda J C, Mantooth H A. A survey of systems to integrate distributed energy resources and energy storage on the utility grid[C]. //IEEE Energy 2030 Conference. 2008: 1-7.
  • 3Chung Y H, Kim H J, Kim K S, et al. Power quality control center for the microgrid system[C]. //The 2nd IEEE Power and Energy Conference. 2008: 942-947.
  • 4Schainker R B. Executive overview-energy storage options for a sustainable energy future[C]. //IEEE PES General Meeting. 2004:2309-2314.
  • 5Kawakami N, Sumita J, Nishioka K, et al. Study of a control method of fuel cell inverters connected in parallel and verification test result of an isolated micro grid[C]. //Power Conversion Conference. 2007:471-476.
  • 6ZHANG Hui, WANG Xin, REN Jing, et al. Research on superconducting magnetic energy storage in the photovoltaic distributed generation[C]. //The 6th IEEE International Power Electronics and Motion Control Conference, 2009: 2198-2202.
  • 7Tao H, Kotsopoulos A, Duarte J L, et al. A soft-switched three-port bidirectional converter for fuel cell and super capacitor applications[C]. //IEEE 36th on Power Electronics Specialists Conference. 2005: 2487-2493.
  • 8Feng X, Liu J, Lee F C. Impedance specifications for stable DC distributed power systems[J]. IEEE Trans on Power Electronics , 2002, 17 (2).. 157-162.
  • 9Zhang C, Tseng K J. A novel flywheel energy storage system with partially-self-bearing flywheel-rotor[J]. IEEE Trans on Energy Conversion, 2007, 22 (2): 477-487.
  • 10Upadhyay P, Mohan N. Design and FE analysis of surface mounted permanent magnet motor/generator for high-speed modular flywheel energy storage systems[C]. //IEEE Energy Conversion Congress and Exposition. 2009: 3630-3633.

共引文献278

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部