期刊文献+

基于3D打印技术的微流控芯片及其初步药效筛选 被引量:4

3D-Printing Microfludic Device for Breast Cancer Cell Culture and Pharmacological Research
原文传递
导出
摘要 目的建立乳腺癌细胞的微流控芯片模型,模拟人体内部微环境三维结构,对乳腺癌细胞进行初步药效筛选。方法利用3D打印技术,制作双层带细胞培养池的微流控芯片,进行乳腺癌细胞培养,通过基质胶构架模拟人体微环境,在芯片上进行紫杉醇抗乳腺癌细胞MCF7药效实验,通过AO/EB染色,在激光共聚焦镜下观察细胞死亡比率,并与传统二维药筛实验进行对比。结果在施以10μL·h^(-1)流速的情况下,6 d后,芯片里的细胞在基质胶支架里形成三维腔体结构。细胞在培养池里培养24 h后,以10μL·h^(-1)流速加含有0.02μmol·m L^(-1)的紫杉醇培养基,处理24 h后,通过激光共聚焦荧光观察到有明显的细胞死亡。结论本实验构建的微流控芯片模型可以实现乳腺癌细胞的三维培养,并进行初步的药物筛选,为进一步实现"人体芯片"奠定基础。 OBJECTIVE To develop a microfluidic mammalian cell culture device with human breast cancer cells co-cultured with extracellular matrix( ECM),reconstitute the 3-dimension human body microenvironment and preliminarily conduct drug screening on the breast cancer chip. METHODS 3D Printing technology was utilized to build a two-layer microchip with cell culture reservoirs.The breast cancer cells( MCF7) were cultured in the matrix gel structure which mimiced the 3-dimension human body microenvironment. The cell toxicity of paclitaxel( PTX) on MCF7 cells was preliminarily observed using this microfluidic chip. With the use of AO / EB immunofluorescent staining and laser confocal microscopy,the cell death ratio induced by PTX was determined and compared with that determined by 2-dimension drug screening methods. RESULTS MCF7 cells cultured on the chip successfully formed a 3D cavity structure in the matrix after 6-day dynamic incubation. The flow rate was 10 μL·h^-1. After 24 h dynamic culture,the culture medium was changed to culture solution containing 0. 02 μmol·m L^-1PTX,and the incubation was continued for 24 h. Obvious cell death was detected under laser confocal microscopy. CONCLUSION The microfluidic chip developed in this study can successfully culture breast cancer cells in 3-dimension structure and perform drug screening,which lays a foundation for actualization of"human-ona-chip".
出处 《中国药学杂志》 CAS CSCD 北大核心 2015年第24期2124-2129,共6页 Chinese Pharmaceutical Journal
基金 十二五科技重大专项资助项目(2013ZX09103002-005) 江苏省科技支撑计划资助项目(BE2014654)
关键词 微流控芯片 3D打印技术 三维培养 药物筛选 microfluidic chip 3D printing technology 3D cell culture drug screen
  • 相关文献

参考文献33

  • 1ESCH M B, KING T L, SHULER M L. The role of body-on-a- chip devices in drug and toxicity studies [ J ]. Anna Rev Biomed Eng, 2011, 13: 55-72.
  • 2SWEENEY L M, SHULER M L, BABISH J G, et al. A cell cul- ture analogue of rodent physiology: Application to naphthalene toxicity[J]. Toxicol In Vitro, 1995, 9(3) :307-316.
  • 3LEE M Y, KUMAR R A, SUKUMARAN S M, et al. Three-di-mensional cellular micmarray for high-throughput toxicology as- says[J]. Proc Natl Acad Sci USA, 2008, 105(1) :59-63.
  • 4PAULL K D, SHOEMAKER R H, HODES L, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: Development of mean graph and COMPARE al- gorithm[ J]. J Natl Cancer lnst, 1989, 81 (14) : 1088-1092.
  • 5JOHNSON J I, DECKER S, ZAHAREVITZ D, et al. Relation- ships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials [ J ]. Br J Cancer, 2001, 84 (10) : 1424.
  • 6WHIESIDES G M. The origins and the future of microfluidics [J]. Nature, 2006, 442(7101): 368-373.
  • 7ABACI H E, GLEDHILL K, GUO Z, et al. Pumpless microflu- idic platform for drug testing on human skin equivalents[ J]. Lab Chip, 2015,15(3) :882-888.
  • 8AU S H, CHAMBERLAIN M D, MAHESH S, et al. Hepatic or- ganoids for microfluidic drug screening[ J ]. Lab Chip, 2014, 14 (17) : 3290-3299.
  • 9MINSEOK S K, JU H Y, JE-KYUN P. A microfluidic platform for 3-dimensional cell culture and cell-based assays [ J ]. Biomed Microdevices, 2007, 9 ( 1 ) :25-34.
  • 10JANG K J, SUH K Y. A multi-layer microfluidic device for effi- cient culture and analysis of renal tubular cells [ J ]. Lab Chip, 2010, 10(1) : 36-42.

二级参考文献26

  • 1Kang L, Chung BG, Langer R, et al. Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today, 2008, 12(1/2): 1-13.
  • 2Dittrich PS, Manz A. Lab-on-a-chip: Microfluidics in drug discovery. Nat Rev Drug Discov, 2006, 5:210-218.
  • 3King KR, Wang S, Irimia D, et al. A high-throughput microfluidic real-time gene expression living cell array. Lab Chip, 2007, 7: 77-85.
  • 4Lee PJ, Hung PJ, Rao VM, et al. Nanoliter scale microbioreactor array for quantitative cell biology. Biotech Bioeng, 2006, 94( 1 ): 5-14.
  • 5Ye N, Qin JH, Shi WW, et al. Cell-based high content screening using an integrated microfluidic device. Lab Chip, 2007, 7: 1696-1704.
  • 6Thorsen T, Maerkl S J, Quake SR. Microfluidic large-scale integration. Science, 2002, 298(5593): 580-584.
  • 7Wu MH, Huang SB, Cui Z, et al. Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing. Sens Actuat B 2008, 129(1): 231-240.
  • 8Huang C, Lee G. A microfluidic system for automatic cell culture. J Micromech Microeng, 2007, 17(7): 1266-1274.
  • 9Jeon NL, Dertinger SKW, Chiu DT, et al. Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000, 16(22): 8311-8316.
  • 10杨才表,赵建龙.基于ADμC812的芯片温度控制系统的研究[J].微计算机信息,2007(25):43-44. 被引量:4

共引文献25

同被引文献28

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部