期刊文献+

位置社交网络的个性化位置推荐 被引量:14

Individual Location Recommendation for Location-Based Social Network
原文传递
导出
摘要 为了有效改善位置社交网络的用户体验,提出了一种个性化位置推荐服务模型.综合考虑了用户的签到行为特点、用户特征及位置兴趣点的语义特征,并将蚁群算法与改进的混合协同过滤算法有效结合起来进行个性化位置推荐,以此提高个性化位置推荐的质量和效率.实验结果表明,提出的位置推荐模型的召回率、准确率和平均绝对误差值都明显优于已有方法. In order to effectively improve the users' experience for location social networks,a model of personalized location recommendation service was proposed. Considering the users' check- in behavior features,the users' characteristics and semantic features of interested location point,this model combines the ant colony algorithm with the improved hybrid collaborative filtering algorithm to improve the quality and efficiency of the individual location recommendation. Experiments show that,the recall,accuracy and average absolute error value of the location recommendation model proposed in this article is superior to the existing methods.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第5期118-124,共7页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61370139) 网络文化与数字传播北京市重点实验室项目(ICDD201506) 北京市属高等学校创新团队建设与教师职业发展计划项目(IDHT20130519)
关键词 位置社交网络 个性化位置推荐 位置服务 协同过滤算法 location-based social network individual location recommendation location-based service collaborative filtering
  • 相关文献

参考文献15

  • 1Zhang J,Chow C,Li Y. iGeoRec : a personalized and ef-ficient geographical location recommendation framework[J]. IEEE Transactions on Services Computing, 2014(99) :1-14.
  • 2Sattari M , Toroslu I H, Karagoz P, et al. Extended fea-ture combination model for recommendations in location-based mobile services [ J ]. Knowledge and InformationSystems, 2014,39(2) :279-313.
  • 3Xie J, Knijnenburg B P, Jin H. Location sharing privacypreference: analysis and personalized recommendation[C ] //Proceedings of the 19th International Conference onIntelligent User Interfaces. New York: ACM , 2014 : 189-198.
  • 4Li W, Yao M , Zhou X,et al. Recommendation of loca-tion-based services based on composite measures of trustdegree [ J ]. The Journal of Supercomputing, 2014,69(3) : 1154-1165.
  • 5Hu B, Ester M. Spatial topic modeling in online socialmedia for location recommendation [C] // Proceedings ofthe 7'h ACM Conference on Recommender Systems. NewYork: ACM, 2013: 25-32.
  • 6Wang H , Terrovitis M , Mamoulis N. Location recommen-dation in location-based social networks using user check-in data[C] //Proceedings of the 21st ACM SIGSPATIALInternational Conference on Advances in Geographic In-formation Systems. New York; ACM , 2013: 364-373.
  • 7Yuan Q, Cong G. Time-aware point-of-interest recom-mendation [C] // Proceedings of the 36th InternationalACM SIGIR Conference on Research and Development inInformation Retrieval. New York: ACM , 2013 : 363-372.
  • 8Noulas A, Scellato S, Lathia N, et al. Mining user mob-ility features for next place prediction in location-basedservices[C]//Data Mining(ICDM),2012 IEEE 12th In-ternational Conference on. Washington : IEEE, 2012 :1038-1043.
  • 9Ying J J C, Lu E H C. Urban point-of-interest recom-mendation by mining user check-in behaviors [C] // Pro-ceedings of the ACM SIGKDD International Workshop onUrban Computing. New York : ACM, 2012 : 63-70.
  • 10Berjani B,Strufe T. A recommendation system for spotsin location-based online social networks [C] // Proceed-ings of the 4th Workshop on Social Network Systems.New York: ACM, 2011: 4.

同被引文献150

  • 1胡加艳,陈秀万,吴雨航,吴才聪.移动位置服务在应急救援中的应用[J].中国应急救援,2008(5):20-23. 被引量:11
  • 2张志政,邢汉承.一种基于实例推理的概念学习方法[J].计算机工程与应用,2006,42(10):87-90. 被引量:2
  • 3周永华.移动交通信息服务系统的体系结构与关键技术[J].计算机工程,2006,32(16):280-282. 被引量:5
  • 4刘群,李素建.基于《知网》的词汇语义相似度的计算[C].台北:第三届汉语词汇语义学研讨会,2002.
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (6) : 734- 749.
  • 6Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[ C ]//In Proceedings of the 14'h Conference on Uncertainty in Arti- ficial Intelligence. Madison: USA, 1998:43-52.
  • 7Shardanand U, Maes P. Social information filtering: al- gorithms for automating word of mouth [ C ]////In Proceed- ings of the SIGCI-II Conference on Human Factors in Com- puting Systems. New York: USA, 1994: 210-217.
  • 8Liu Haifeng, Hu Zheng, Mian A, et al. A new user simi- larity model to improve the accuracy of collaborative filte- ring [ J ]. Knowledge-Based Systems, 2014, 56: 156- 166.
  • 9Bobadilla J, Ortega F, Hernando A, et al. Recommender systems survey [ J ]. Knowledge-Based Systems, 2013, 46 : 109-132.
  • 10GOWALLA[EB/OL]. http : //mashable. com/category/gowalla/.

引证文献14

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部