期刊文献+

敲低IK1钾通道抑制ClC-3氯通道的表达和功能 被引量:2

Knockdown of IK1 potassium channel inhibits expression and function of ClC-3 chloride channel
在线阅读 下载PDF
导出
摘要 目的:探讨Cl C-3氯通道是否为IK1钾通道的调节靶点,重点研究鼻咽癌细胞IK1钾通道对Cl C-3氯通道功能及蛋白表达的影响。方法:采用siRNA转染技术抑制低分化鼻咽癌上皮细胞(CNE-2Z)IK1基因的表达;real-time PCR技术检测Cl C-3 mRNA的表达;Western blot检测Cl C-3的蛋白表达;细胞免疫荧光结合激光共聚焦显微镜技术检测Cl C-3和IK1蛋白在细胞内分布;全细胞膜片钳记录细胞氯电流。结果:IK1 siRNA可以成功转染CNE-2Z细胞,有效抑制鼻咽癌细胞IK1钾离子通道的表达;用IK1 siRNA抑制鼻咽癌细胞IK1钾离子通道的表达后,Cl C-3的mRNA表达上调而Cl C-3蛋白却表达减少:在低分化鼻咽癌上皮细胞,低渗刺激可激活氯通道,产生一个较大的氯电流,在成功转染IK1 siRNA的细胞,此氯电流明显减弱。结论:敲低IK1钾离子通道可抑制Cl C-3氯离子通道的表达和功能。 AIM: To investigate whether the Cl C-3 chloride channel is an acting target of the IK1 potassium channel,and to study the action of IK1 potassium channel on the functional activities and expression of Cl C-3 chloride channels. METHODS: IK1 gene was silenced by IK1 siRNA in poorly-differentiated nasopharyngeal carcinoma cells( CNE-2Z). Real-time PCR and Western blot were used to detect the expression of Cl C-3 at mRNA and protein levels. The distribution of Cl C-3 protein in the cells was observed under confocal immunofluorescence microscope. The chloride current was recorded by the patch-clamp technique. RESULTS: IK1 siRNA was successfully transfected into the CNE-2Z cells and knocked down the expression of IK1 potassium. The mRNA expression of Cl C-3 was increased by the IK1 siRNA. IK1 siRNA inhibited the expression of Cl C-3 protein. A chloride current was activated by hypotonic challenges,and the hypotonicity-induced current was reduced in the cells which successfully transfected with IK1 siRNA. CONCLUSION: The knockdown of IK1 potassium channels inhibits the expression and function of Cl C-3 chloride channel.
出处 《中国病理生理杂志》 CAS CSCD 北大核心 2015年第12期2113-2119,共7页 Chinese Journal of Pathophysiology
基金 国家自然科学基金资助项目(No.81272223)
关键词 CL C-3氯通道 IK1钾通道 鼻咽癌 膜片钳技术 ClC-3 chloride channel IK1 potassium channel Nasopharyngeal carcinoma Patch-clamp techniques
  • 相关文献

参考文献1

二级参考文献72

  • 1Nickel W. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 2005; 6:607-614.
  • 2Aridor M, Bannykh SI, Rowe T, Balch WE. Sequential coupling between COPⅡ and COPⅠ vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol 1995; 131:875-893.
  • 3Barlowe C, Orci L, Yeung T, et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 1994; 77:895-907.
  • 4Kuge O, Kuge S. [COP-coated vesicles in intracellular protein transport]. Tanpakushitsu Kakusan Koso 1995; 40:2427-2435.
  • 5Gaynor EC, Graham TR, Emr SD. COPI in ER/Golgi and intra-Golgi transport: do yeast COPI mutants point the way? Biochim Biophys Acta 1998; 1404:33-51.
  • 6Hachiya NS, Watanabe K, Yamada M, Sakasegawa Y, Kaneko K. Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein. Biochem Biophys Res Commun 2004; 315:802-807.
  • 7Schwab A. Function and spatial distribution of ion channels and transporters in cell migration. Am JPhysiol Renal Physiol 2001; 280:F739-F747.
  • 8Ghanshani S, Wulff H, Miller MJ, et al. Up-regulation of the IKCal potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 2000; 275:37137-37149.
  • 9Barfod ET, Moore AL, Roe MW, Lidofsky SD, Ca2+-activated IK1 channels associate with lipid rafts upon cell swelling and mediate volume recovery. J Biol Chem 2007; 282:8984- 8993.
  • 10Strayer DS, Hoek JB, Thomas AP, White MK. Cellular activation by Ca2+ release from stores in the endoplasmic reticulum but not by increased free Ca2+ in the cytosol. Biochem J 1999; 344 Pt 1:39-46.

共引文献2

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部