期刊文献+

Biomathematical study of Sutterby fluid model for blood flow in stenosed arteries

Biomathematical study of Sutterby fluid model for blood flow in stenosed arteries
原文传递
导出
摘要 In this paper, we have discussed the biomathematical analysis of Sutterby fluid model for blood flow in stenosed tapered arteries. The equations for the Sutterby fluid model are modeled in cylindrical geometry. The equations have been developed for the ease of mild stenosis. Perturbation solutions are attained in terms of small Sutterby fluid parameter β for the velocity, impedance resistance and wall shear stress. Three types of arteries i.e. converging, diverging and non-tapered have been considered for the analysis and discussion. Graphical results have been presented for different parameters of interest. Streamlines have been plotted at the end of the paper.
出处 《International Journal of Biomathematics》 2015年第6期87-98,共12页 生物数学学报(英文版)
关键词 Blood flow Sutterby fluid tapered stenosed arteries perturbation solution 流体模型 血流量 数学研究 动脉 狭窄 生物 模型方程 数学分析
  • 相关文献

参考文献10

二级参考文献88

  • 1Mann, EG., Herrick, J.F., Essex, H., Blades, E.J.: Effects of blood flow on decreasing the lumen of a blood vessel. Surgery 4, 249-252 (1938)
  • 2Eringen, A.C.: Theory of micropolar fluid. Mech. J. Math. 16, 1-18 (1966)
  • 3Agarwal, R.S., Dhanapal, C.: Numerical solution to the flow of a micropolar fluid between porous walls of different permeability. Int. J. Eng. Sci. 25, 325-336 (1987)
  • 4Philip, D., Chandra, E: Peristaltic transport of simple micro fluid. Proc. Natl. Acad. Sci. India 65(A), 63-74 (1995)
  • 5Young, D.F.: Effect of a time dependent stenosis of flow through a tube. J. Eng. Ind. 90, 248-254 (1968)
  • 6Srivistava, L.M.: Flow of couple stress fluid through stenotic blood vessels. J. Biomech. 15, 479-485 (1985)
  • 7Haldar, K.: Effects of the shape of stenosis on the resistance to blood flow through an artery. Bull. Math. Biol. 47, 545-550 (1985)
  • 8Srivastava, V.E: Arterial blood flow through a nonsymmetrical stenosis with applications. Jpn, J. Appl. Phys. 34, 6539-6545 (1995)
  • 9Srivastava, V.E, Saxena, M.: Suspension model for blood flow through stenotic arteries with a cell-free plasma layer. Math. Biosci. 139, 79-102 (1997)
  • 10Ang, K.C., Mazumdar, J.N.: Mathematical modeling of three- dimentional flow through an asymmetric arterial stenosis. Math. Comput. Modell. 25, 19-29 (1997)

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部