摘要
为提高EAST偏滤器的抗热载和排热能力,将偏滤器第一壁的材料由原来的石墨改为钨,在结构上,靶板采用了类ITER的单块结构,支撑和冷却采用一体化的盒式结构。确定了EAST钨偏滤器的冷却结构后,通过水管的流固耦合传热模型,分析了外靶板在紊流冷却方式下的散热情况。同时计算了在水冷系统失效的情况下,偏滤器外靶板的危险区域在3、5、8、10MW·m^(-2)热流密度下的瞬态温度分布情况。结果表明,水流速度在4m·s^(-1)时,水管可以承受峰值功率10MW·m^(-2)的热流密度,能够很好地满足EAST装置运行的排热要求。
In order to improve the anti-thermal load and heat dissipation performance of the divertor of EAST, its first wall material is changed to tungsten from graphite. In the structure, outer target adopts the ITER-like monoblock, bracing and cooling structure adopts incorporate cassette. After establishing the cooling structure of EAST tungsten divertor, the flows-solid coupling heat conduction model of water-pipes is used to analyze the heat dissipation situation of outside target in the form of turbulent flow. While the cooling system comes to failure, a series of heat flux value 3MW·m2, 5MW·m2, 8MW·m2, 10MW·m2 are applied in the hazardous area to analyze transient conditions and real temperature distribution. The results shows that if the water flows at 4m·s1, the cooling pipes can withstand the heat flux with peak power in 10MW·m2. It can well meet the needs in heat dissipation of EAST experiment.
出处
《核聚变与等离子体物理》
CAS
CSCD
北大核心
2015年第4期356-360,共5页
Nuclear Fusion and Plasma Physics
关键词
钨偏滤器
热工水力分析
失效
EAST
EAST
Tungsten divertor
Thermal hydraulic analysis
Failure