期刊文献+

一种小波包变换的声纹参数提取方法研究 被引量:2

Voiceprint Parameters Extraction Based on Wavelet Packet Transform
在线阅读 下载PDF
导出
摘要 在声纹识别系统中,对声纹参数的提取很重要。传统的MFCC参数忽略了语音信号的动态特性,因此提出了一种基于小波包变换的声纹参数提取方法。为了更突出说话人的声纹特征,克服说话内容不同对提取声纹参数的影响,在分帧阶段采用帧长为2560点,增长有效语音段。再结合基于矢量量化(VQ)系统进行说话人识别实验,并通过比较常用的db3、db4、db6、coif3小波函数选取最优基。实验证明,相对于常用的256点帧长,帧长为2560点的识别率较高且提高了运算速率。coif3小波函数为声纹参数提取的最优基。新的WPT参数的识别率优于传统的MFCC参数。 In speaker recognition system, the voice parameters extraction is very important. The traditional MFCC parameter ignores the dynamic characteristics of speech signal, so a method is presented for extracting voice parameters based on wavelet packet transform. Text independent voice recognition system is to voice a more prominent feature of the speaker and overcomes the different speech content effects on the voiceprint parameters extraction. The frame length is adopted to increase effective voice for 2560 points in framing stage. And vector quantization (VQ) is combined with the speaker recognition experiment system, through the comparison of db3, db4, db6, coil3 wavelet function to choose the best basis. Experimental results show that frame length within 2560 points is higher and improves com- puting speed in comparison with common 256 point of the frame length. The optimal base coif3 wavelet function is taken as voiceprint parameter extraction. The MFCC parameter i- dentification of the WPT parameters of the new rate is better than tradition one.
出处 《沈阳理工大学学报》 CAS 2015年第6期77-82,共6页 Journal of Shenyang Ligong University
关键词 声纹参数 小波包变换 能量 矢量量化 语音信号 voiceprint parameter wavelet transform energy vector quantization speech signal
  • 相关文献

参考文献8

  • 1Glembek O, Burget L, Dehak N, et al. Comparison of scoring methods used in speakerrecongn-ition with joint factor analysis [ C ]. In Proc. ICASSP ,2009.
  • 2D. Avic. An expert system for speaker identification u- sing adaptive wavelet sure entropy [J]. Expert System with Applications, 2009,36 ( 10 ) :6295 - 6300.
  • 3张万里,刘桥.Mel频率倒谱系数提取及其在声纹识别中的作用[J].贵州大学学报(自然科学版),2005,22(2):207-210. 被引量:20
  • 4Kajarekar. Phone-based cepstral polynomial SVM sys- tem for speakerrecognitiom [C]. Procee-dings of Inter- speech, 2008.
  • 5梁学章,何甲兴.小波分析[M].北京:国防工业出版社,2004.
  • 6刘雅琴,裘雪红.应用小波包变换提取说话人识别的特征参数[J].计算机工程与应用,2006,42(9):67-69. 被引量:15
  • 7Azzam Sleit, Sami Serhan, Loai Nemir. A histogram based speaker identification technique [ C]. Internation- al Conference on ICADIWT,2008:384 -388.
  • 8Dehak R, Dehak N, Kenny P, et al. Kernel Combination for SVM Speaker Verification[ C]. In Odyssey Speaker and Language Recognition Workshop, 2008.

二级参考文献8

  • 1易克初.语音信号处理[M].北京:国防工业出版社,2002..
  • 2Waleed Fakhr,Ahmed AbdelSalam, Naclder Hamdy. Enhancement of mismatched conditions in speaker recognition for multimedia applications[J].IEEE International Conference on Acoustics, Speech, and Signal Processing,2004 - 05.
  • 3Seiichi Nakagawa, Wei Zhang, Mitsuo Takahashi. Text-independent speaker recognition by combining speaker-specific GMM with speaker adapted syllable-based HMM[J]. IEEE International Conference on Acoustics, Speech, and Sisal Processing,2004 -05.
  • 4何英 何强.MATLAB扩展编程[M].北京:清华大学出版社,2002..
  • 5刘贵忠,邸双亮.小波分析及应用[M].第一版,西安:西安电子科技大学出版社,1992
  • 6Tomi Kinnunen,Ismo Karkkainen.Class-Discriminative Weighted Distortion Measure for VQ-based Speaker Identification[J].SSPP&SPR 2002,LNCS2396,2002:681~688
  • 7Linde Y,Buzo A,Gray R M.An Algorithm for vector quantizer Design[J].IEEE Transaction on Communications,1980;28(1):84~95
  • 8齐震,朱邦太,岳强,赵显红.模糊神经网络在超声马达位置控制中的应用[J].洛阳工学院学报,2002,23(4):64-66. 被引量:20

共引文献40

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部