期刊文献+

PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction 被引量:5

PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction
原文传递
导出
摘要 Bimetallic PtxCuy nanocrystals (NCs) with well-defined hexa-pod morphology were synthesized via a wet chemistry approach. The as-synthesized convex NCs with dimensions of around 20 nm show exposed low-index (111) facets on the seeds and various high-index facets on the pods. The growth mechanism involved preferred growth along the 〈100〉 crystallographic direction on cuboctahedral seeds. The synthetic protocol could be applied to the synthesis of PtxCuy NCs with various Cu/Pt ratios. The electro-catalytic activity of the hexa-pod PtxCuy NCs supported on carbon black towards the oxygen reduction reaction (ORR) was studied. The hexa-pod PtCu2/C catalysts exhibit the highest specific activity (3.7 mA/cm^2pt) and mass activity (2.4 A/mget) reported to date for PtxCuy. Comparison with other morphological forms of PtxCuy indicated that the enhanced activity originated from morphological factors. The existence of high-index facets as well as abundant edges and steps on the pods could reasonably explain the enhanced catalytic activity. The hexa-pod PtxCuy/C catalysts also show high morphological stability and activity after accelerated durability tests. The as-synthesized hexa-pod PtxCuy NCs have high potential as cathode electro-catalysts for proton exchange membrane fuel cells. 二金属的磅 <sub> x </sub > 有明确的昆虫形态学的 Cu <sub> y </sub> nanocrystals (NC ) 经由一条湿化学途径被综合。有约 20 nm 表演的尺寸的同样综合的凸的 NC 暴露了低索引(111 ) 种子上的方面和豆荚上的各种各样的高索引的方面。生长机制沿着 cuboctahedral 上的结晶的方向播种的 <100> 包含了比较喜欢的生长。合成协议能被用于磅 <sub> x </sub 的合成 > 有各种各样的 Cu/Pt 比率的 Cu <sub> y </sub> NC。向氧减小反应(ORR ) 在碳黑色上支持的昆虫 PtxCuy NC 的电镀物品催化的活动被学习。昆虫 PtCu <sub>2</sub>/C 催化剂展出最高特定的活动(3.7 妈 / 厘米 <sub > 磅 </sub><sup>2</sup>) 和集体活动(2.4 A/mg <sub > 磅 </sub>) 报导了为磅 <sub> x </sub 标明日期 > Cu <sub> y </sub> 。有磅 <sub> x </sub 的另外的词法形式的比较 > Cu <sub> y </sub> 显示提高的活动从词法因素发源。豆荚上的高索引的方面以及丰富的边和步的存在能相当解释提高的催化活动。昆虫磅 <sub> x </sub > Cu <sub> y </sub>/C 催化剂也在加速的耐久性测试以后显示出高词法的稳定性和活动。同样综合的昆虫磅 <sub> x </sub > Cu <sub> y </sub> NC 为质子交换膜燃料房间作为阴极电镀物品催化剂有高潜力。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第10期3342-3352,共11页 纳米研究(英文版)
基金 We acknowledge the Microstructure Laboratory for Energy Materials (MLEM) at CUP for the technical support with TEM. We also acknowledge the funding support from the National Natural Science Foundation of China (No. 21303265), Ph.D. Programs Foundation of Ministry of Education of China (No. 20130007120012) and Young Talent Award of CUP (No. YJRC-2013-46).
关键词 oxygen reduction reaction bimetallic alloy morphology control fuel cell electro-catalysis high-index 氧还原反应 形态比较 纳米晶体 电催化性能 质子交换膜燃料电池 化学法合成 电催化活性 荚果
  • 相关文献

参考文献5

二级参考文献64

  • 1Wu, H.; Chan. G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012. 7, 309-314.
  • 2Merlet, C.; Rotenberg, B.; Madden, P. A.; Tabema, P. L.; Simon, P.; Gogotsi, Y.; Salanne, M. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat.Mater. 2012,11, 306-310.
  • 3Lubner, C. E.; Applegate, A. M.; Knorzer, P.; Ganago, A.; Bryant. D. A.; Happe, T.; Golbeck, J. H. Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc. Natl. Acad Sci. USA 2011,108, 20988-20991.
  • 4Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011,332,443-447.
  • 5Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010,110, 527-546.
  • 6Somorjai, G. A.; Park, J. Y. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev. 2008, 37, 2155-2162.
  • 7Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669-3712.
  • 8Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880—4910.
  • 9Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science2009, 324, 1302-1305.
  • 10Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007, 7, 2951-2959.

共引文献37

同被引文献17

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部