期刊文献+

气象数据弱相关的光伏出力短期预测 被引量:8

Short-term Photovoltaic Output Forecasting with Weakly Related Meteorological Data
在线阅读 下载PDF
导出
摘要 光伏出力受气象因素影响,气象数据的有效程度影响着预测结果的准确性。本文提出了气象数据与光伏出力弱相关时短期光伏出力的预测方法。首先采用Pearson关联系数分析法得到影响光伏发电的主要因素,而后采用模糊聚类理论构建相似日,建立了具有优秀小样本学习能力的支持向量回归机预测模型。针对该模型,提出了两阶段确定模型参数的方法,首先采用全局网格搜索确定核参数p和正则化参数C的取值范围,再通过自适应差分进化算法寻找最优核参数p和正则化参数C,以提高参数ε选取范围设置较大时的预测精度。实例测试表明,使用本文提出的SVR方法预测的平均RMSE为5.551%,满足预测要求,比常规BP预测方法提高精度1.238%,在气象数据弱相关时对光伏短期出力有更好的预测能力。 Photovoltaic(PV)output is influenced by meteorological factors,and the significant degree of meteorological data influences the accuracy of forecasting result.In this paper,a short-term PV output forecasting method is presented in such weather situation that the weather data and PV output data are weakly correlated.The main factors affecting PV generation are found out by Pearson correlation coefficient method.Based on relevant factors,fuzzy clustering analysis method is used to build similar days,and support vector regression(SVR)forecasting model that has excellent learning ability for small sample is built.In order to determine model parameters,a two-step parameter-determining method is proposed,in which the global grid searching method is applied to determine the value region of kernel parameter p and regularization parameter C which are optimized through self-adaptive differential evolution algorithm,then the prediction accuracy is increased when the appropriate ranges of parameterε are wider.Examples show that the proposed SVR method has good forecasting ability when the weather data and PV output data are weakly correlated,and the average prediction value,RMSE,is 5.551% which meets the requirement of prediction,and the accuracy is increased to 1.238% by comparison with general BP forecasting method.
出处 《现代电力》 北大核心 2015年第6期1-6,共6页 Modern Electric Power
关键词 分布式光伏 光伏出力预测 支持向量机(SVM) 参数选择 distributed photovoltaic PV output forecasting support vector machine(SVM) parameter selected
  • 相关文献

参考文献20

  • 1国家能源局.2013年光伏发电统计数据[EB/OL].http://www.nea.gov.cn/2014—04/28/c133296165.htm,2014—04—28.
  • 2Tan Y, Meegahapola L, Muttaqi K M. A review of technical challenges in planning and operation of re- mote area power supply systems [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 876 - 889.
  • 3Brouwer A S, van den Broek M, Seebregts A, et al. Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled [J]. Renewable and Sustainable Energy Re- views, 2014, 33: 443-466.
  • 4崔洋,孙银川,常倬林.短期太阳能光伏发电预测方法研究进展[J].资源科学,2013,35(7):1474-1481. 被引量:50
  • 5茆美琴,龚文剑,张榴晨,曹雨,徐海波.基于EEMD-SVM方法的光伏电站短期出力预测[J].中国电机工程学报,2013,33(34):17-24. 被引量:112
  • 6ChowSK H, LeeEWM, LiDHW. Short-term prediction of photovoltaic energy generation by intelli- gent approach [J]. Energy and Buildings, 2012, 55 : 660 - 667.
  • 7Bouzerdoum M, Mellit A, Massi Pavan A. A hybrid model (SARIMA- SVM) for short-term power fore- casting of a small-scale grid-connected photovoltaic plant [J]. Solar Energy, 2013, 98:226-235.
  • 8Parida B, Iniyan S, Goic R. A review of solar photo- voltaic technologies [J]. Renewable and sustainable energy reviews, 2011, 15(3) : 1625 - 1636.
  • 9Kamarzaman N A, Tan C W. A comprehensive re- view of maximum power point tracking algorithms for photovoltaic systems [J]. Renewable and Sustainable Energy Reviews, 2014, 37:585 - 598.
  • 10任航,叶林.模拟分析环境因素对小型太阳能发电系统运行特性的影响[J].电工技术学报,2010,25(10):158-165. 被引量:11

二级参考文献91

共引文献453

同被引文献93

引证文献8

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部