期刊文献+

基于稀疏重构的L型阵列MIMO雷达降维DOA估计 被引量:2

Reduced-dimensional DOA estimation based on sparse reconstruction in MIMO radar with L-shaped array
在线阅读 下载PDF
导出
摘要 针对L型阵列多输入多输出(multiple-input multiple-output,MIMO)雷达二维空间角估计问题,提出一种基于协方差矩阵联合稀疏重构的降维波达方向(direction of arrival,DOA)估计算法。该算法根据L型阵列MIMO雷达联合流型矢量的特点,通过降维矩阵的设计及回波数据的降维变换,最大程度地去除了所有的冗余数据;通过协方差矩阵联合构造稀疏线性模型,将2维角参量空间映射到1维空间,极大降低字典长度和求解复杂度的同时,不牺牲阵列孔径,实现了二维空间角度的有效估计和参数的自动配对。理论分析与实验仿真表明:与RD_MUSIC算法相比,本文降维处理有效提高阵元利用率的同时,最大程度地降低了回波数据的维数;与传统子空间类算法相比,基于协方差矩阵联合构造的稀疏线性模型充分利用了阵列孔径,无需预先估计目标数目,参数估计性能在低信噪比及小快拍数据长度下优势明显。最后,仿真结果验证了本文理论分析的正确性和算法的有效性。 Aiming at the problem of two dimensional angles estimation for multiple-input multiple-output (MIMO) radar with L-shaped array, a new reduced-dimensional direction of arrival (DOA) estimation method based on sparse reconstruction is proposed. Giving the steering vector of MIMO radar with L-shaped array, a reduced-dimensional matrix is employed, and data redundancy of high dimensional received data at the greatest degree can be removed via the reduced-dimensional transformation. Through the ioint construction of the two- dimensional sparse linear model with covariance matrix, the dimension of the dictionary is reduced to one-dimen- sion from two-dimensional space, and the length of the redundant dictionary and computation complexity is largely reduced. Furthermore, the method, without costing the aperture of array, can realize two dimensional spatial angles estimation with automatic pairing. Compared with reduced-dimensional (RD) MUSIC, the pro- posed method can reduce the dimension of received data at the greatest degree and enhance sensors efficiency. Com- pared with the traditional subspace algorithms, the proposed method, which is based on the joint sparse linear model of the covariance matrix, makes the best of all apertures of array and can achieve better estimation performance under lower signal-noise-ratio(SNR) and a few snapshots without pre-estimation for the number of targets. Finally, simula- tion results verify the correctness of the theoretical analysis and the effect of the proposed algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第12期2725-2732,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(60702015)资助课题
关键词 多输入多输出雷达 L型阵列 稀疏重构 波达方向估计 multiple-input multiple-output (MIMO) radar L-shaped array sparse reconstruction direction of arrival (DOA) estimation
  • 相关文献

参考文献19

  • 1Huleihel W, Tabrikian J, Shavit R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Trans. on Signal Processing, 2013, 61(20) : 5075 - 5089.
  • 2Tang B, Tang J, Zhang Y, et al. Maximum likelihood estima- tion of DOD and DOA for bistatic MIMO radar[J]. Signal Pro- cessing,2013, 93(5) ~ 1349 - 1357.
  • 3Arash K. Efficient transmit beamspaee design for search-free based DOA estimation in MIMO radar[J]. IEEE Trans. on Sig- nal Processing, 2014, 62 (6) :1490 - 1500.
  • 4Li J F, Zhang X K A method for joint angle and array gain-phase er- ror estimation in bistatic multiple input multiple output nonlinear ar rays[J]. IET Signal Processing,2014, 8(2) : 131 - 137.
  • 5Jiang H~ Zhang Y, Li J, et al. A parafac-based algorithm for multi-dimensional parameter estimation in polarimetric bistatic MIMO radar[J]. EURASIP Journal on Advances in Signal Processing ,2013,2013(1) : 1 - 14.
  • 6Cheng Q, Hua Y. Further study of the pencil-MUSIC algorithm[J]. IEEE Trans. on Aerospace Electronic Systems, 1996,32 (1) : 284 - 299.
  • 7Hua Y, Sarkar K, Weiner D. An L-shaped array for estimation 2-D directions of wave arrival[J]. IEEE Trans. on Antennas and Propagation, 1991, 39(2) .. 143 - 146.
  • 8Chen H W, Li X, Jiang W D, et al. MIMO radar sensitivity analysis of antenna position for direction finding [J]. IEEE Trans. on Signal Processing, 2012, 60(10) : 520l - 5216.
  • 9Chen H W, Zhou W, Yang J, et al. Manifold sensitivity analysis for MIMO radar[J]. IEEE Geoscience and Remote Sensing Let- ters,2012, 9(5) ~ 999 - 1003.
  • 10符渭波,赵永波,苏涛,何学辉,赵光辉.基于L型阵列MIMO雷达的DOA矩阵方法[J].系统工程与电子技术,2011,33(11):2398-2403. 被引量:7

二级参考文献83

  • 1Fishler E, Haimovieh A, Blum R, et al. MIMO radar: an idea whose time has come[C]//Proc, of IEEE Radar Conference, 2004:71 - 78.
  • 2Fishler E, Haimovieh A, Blum R, et al. Spatial diversity in radars models and detection performance[J]. IEEE Trans. on Signal Processing, 2006,54 (3) : 823 - 838.
  • 3Xu Luzhou, Li Jian, Stoica P. Adaptive techniques for MIMO radar[C]//4th IEEE Workshop Sensor Array Multi-Channel Processing, 2006: 258 - 262.
  • 4Li Jian, Stoica P, Xie Yao. On probing signal design for MIMO radar[C]//40th Asilomar Conference on Signals, Systems and Computers, 2006.
  • 5Bekkerman I, Tabrikian J. Target detection and localization using mimo radars and sonars[J].IEEE Trans. on Signal Processing,2006,54(10) :3873 - 3883.
  • 6Cheng Q, Hua Y. Further study of the pencil-MUSIC algorithm[J].IFEE Trans. on Aerospace Electronic Systems, 1996,32 (1) : 284 - 299.
  • 7Capon J. High resolution frequency-wave number spectrum analysis[C]//Proc, of the IEEE, 1969,57 : 1408 - 1418.
  • 8Kay S M. Fundamentals of statistical signal processing: estimation theory[M]. Englewood Cliffs : Prentice Hall, 1998.
  • 9Forster P, Larzabal P, and Boyer E. Threshold performance analysis of maximum likelihood DOA estimation [J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3183-3191.
  • 10Park Cheol-Sun, Choi Jun-Ho, Yang Jong-Won, et al.. Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources [C]. Proe. 11th International Conference on Advanced Communication Technology, Phoenix Park, Dublin, Feb. 15-18, 2009:2295-2298.

共引文献57

同被引文献8

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部