期刊文献+

基于机器视觉与支持向量机的核桃外部缺陷判别分析方法 被引量:15

Discrimination of Walnut External Defects Based on Machine Vision and Support Vector Machine
在线阅读 下载PDF
导出
摘要 使用3CCD高精度面阵相机采集新疆多个品种核桃RGB图像,设计一种自适应双阈值的Otsu法,快速、准确地分割出缺陷区域;基于分割区域的几何、纹理等20个初始特征,转换为新的9维特征向量集;以该特征集为输入,建立基于贝叶斯、BP神经网络与支持向量机的15个识别模型,对比评价其适应性,以及裂缝、碎壳、黑斑3类核桃外部缺陷的识别性能与时间。结果表明,基于径向基的支持向量机识别模型效果最好,对3类缺陷的验证集平均识别率分别为93.06%、88.31%、89.27%,对缺陷的总识别率为90.21%,平均识别时间为10-4 s级。研究成果能够用于今后核桃缺陷的在线检测与分级,同时也为坚果等其他作物品质的在线检测识别提供一定参考。 In the present study, based on the RGB images acquired using a 3-CCD high-precision area array camera for several varieties of walnuts in Xinjiang, we designed a self-adaptive double-threshold Otsu method which can rapidly and accurately segment the defective regions and transform 20 initial features including geometry and texture and other features to a 9-demensional set of eigenvectors. Using the set of eigenvectors as input, 15 recognition models were established based on Bayesian network, BP neural network(BPNN) and support vector machine(SVM), and their adaptability as well as identification performance and mean recognition time for 3 defects(crack, damage, and black spot) were compared. The results revealed that the SVM model based on radial basis function(RBF), showing a mean recognition time at the order of magnitude of 10-4 s, provided the best results, giving average test recognition accuracy of 93.06% for crack, 88.31% for damage, and 89.27% for black spot and total recognition rate of 90.21% for the 3 external defects. These results can provide useful data for on-line determination and classification of walnut detects and on-line quality identification of other nuts.
出处 《食品科学》 EI CAS CSCD 北大核心 2015年第20期211-217,共7页 Food Science
基金 "十二五"国家科技支撑计划项目(2011BAD27B02-05-02) 国家自然科学基金面上项目(61367001) 新疆农业工程装备创新设计重点实验室资助项目
关键词 核桃 机器视觉 外部缺陷 支持向量机 识别 walnuts machine vision external defects support vector machine recognition
  • 相关文献

参考文献26

  • 1王文德,王贵,张俊宽,等.GB.rI"20398--2006核桃坚果质量等级[s].北京:中国标准出版社,2006.
  • 2ERCISLI S, SAYINCI B, KARA M, et al. Determination of size and shape features of walnut (Juglansregia L.) cultivars using image processing[J]. Scientia Horticulturae, 2012, 133: 47-55.
  • 3CHEN Linnan, MA Qingguo, CHEN Yongkun, et al. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers[J]. Scientia Horticulturae, 2014, 168: 240-248.
  • 4GHAZANFARI A, IRUDAYARAJ J. Classification of pistachio nuts using a string matching technique[J]. Transactions of the ASABE, 1996, 39(3): 1197-1202.
  • 5GHAZANFARI A. Machine vision classification of pistachio nuts using pattern recognition and neural networks[D]. Saskatoon: University of Saskatchewan, 1996.
  • 6GHAZANFARI A, IRUDAYARAJ J, KUSALIK A. Grading pistachio nuts using a neural network approach[J]. Transactions of the ASABE, 1996, 39(6): 2319-2324.
  • 7GHAZANFARI A, IRUDAYARAJ J, KUSALIK A, et al. Machine vision grading of pistachio nuts using fourier descriptors[J]. Journal of Agricultural Engineering Research, 1997, 68(3): 247-252.
  • 8GHAZANFARI A, WULFSOHN D, IRUDAYARAJ J. Machine vision grading of pistachio nuts using gray-level histogram[J]. Canadian Agricultural Engineering, 1998, 40(1 ): 61-66.
  • 9郭晓伟.基于机器视觉的开心果闭壳与开壳识别[J].计算机应用,2011,31(2):426-427. 被引量:6
  • 10方建军,刘仕良,张虎.基于机器视觉的板栗实时分级系统[J].轻工机械,2004,22(3):92-94. 被引量:16

二级参考文献128

共引文献231

同被引文献229

引证文献15

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部