期刊文献+

先进安注箱热工水力特性研究 被引量:5

Investigation on the Thermalhydraulic Characteristics of Advanced Accumulation Tank
在线阅读 下载PDF
导出
摘要 为了研究先进安注箱的热工水力特性,建立了其数学模型,包括基本守恒方程、传热模型、传质模型和阻尼器模型。开发了先进安注箱计算模块,并将其嵌入到RELAP5/MOD3.3程序中。通过与CFD模拟结果的比较分析,验证了文中模型和求解方法的合理性。针对某先进安注箱,研究了其热工水力特性,并开展了参数敏感性分析,结果表明:各参数的变化趋势合理,先进安注箱能实现从大流量到小流量段的过渡;小流量阶段的出口质量流量随阻尼器直径的增大而减小;整个阶段的出口质量流量随大流量水体积与氮气体积比的增大而减小;当立管形阻系数在一定的变化范围内时,大流量阶段的出口质量流量随立管形阻系数的减小而增大。该研究将为我国先进安注箱的设计和实验研究提供理论依据。 To investigate the thermalhydraulic characteristics of advanced accumulation tank, the mathematical models, including the conservation equations, heat transfer model, mass transfer model and the damper model, are established. The calculation module of advanced accumulation tank is developed and embedded into the RELAP5/MOD3.3 code. By comparing the simulation results of the modified RELAP5 with those of a CFD analysis, the rationality of the models and solution methods is validated. The thermalhydraulic characteristics and the parameter sensitivity analyses of an advanced accumulation tank are performed with the modified code. It is found that the parameter variation trends are reasonable and the transition from large flow phase to small flow phase can be achieved by the advanced accumulation tank~ large damper diameter leads to a small exit mass flow rate in the small flow phase~ a small initial volume ratio of water to nitrogen leads to a large exit mass flow rate~ and a large form loss coefficient of the stand pipe may result in a small exit mass flow rate in the large flow phase when the form loss coefficient varies in a certain range. The present study could provide a theoretical basis for the design and experimental investigation on the advanced accumulation tank.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第11期116-121,共6页 Journal of Xi'an Jiaotong University
基金 国家"863计划"资助项目(2012AA050905)
关键词 先进安注箱 热工水力特性 敏感性分析 advanced accumulation tank thermalhydraulic characteristics sensitivity analysis
  • 相关文献

参考文献9

  • 1SUZUKI S, OGATA Y, NISHIHARA Y, et al. Global development of Mitsubishi standard APWR as an effective countermeasure against global warming[J].Mitsubishi Heavy Industries Technical Review, 2008, 45(3): 51-54.
  • 2SUZUKI S, KANDA M, SHIMIZU S, et al. EU-APWR realizing safety reliability and economic efficiency[J].Mitsubishi Heavy Industries Technical Review, 2009, 46(1): 17-20.
  • 3SAITO T, YAMASHITA J, ISHIWATARI Y, et al. Advances in light water reactor technologies[M].New York, USA: Springer, 2011: 31-83.
  • 4SHIRAISHI T, WATAKABE H, NAKAMORI N, et al. Characteristics of the flow-controlled accumulator[J].Nuclear Technology, 1994, 108: 181-190.
  • 5SHIRAISHI T, MATSUOKA T, SUGIZAKI T, et al. Development of the advanced accumulator for next generation PWR[J].Thermal and Nuclear Power Engineering, 1994, 45(6): 43-49.
  • 6SHIRAISHI T. Design of the advanced accumulator for the pressurized water reactor[J].Nuclear Engineering and Design, 2011, 241: 3910-3924.
  • 7SHIRAISHI T, WATAKABE H. Development of the advanced accumulator for the pressurized water reactor[J].Nuclear Engineering and Design, 2012, 249: 318-334.
  • 8胡宏伟. 先进安注箱性能分析及其在CPR1000中的应用研究[D].西安: 西安交通大学, 2014.
  • 9凌空, 陶文铨. 新型安注箱水动力特性的数值模拟[R].深圳: 中科华核电技术研究院有限公司, 2013: 20-25.

同被引文献20

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部