期刊文献+

碱性电解水析氢电极的研究进展 被引量:26

Research progress in hydrogen electrode materials for alkaline water electrolysis
在线阅读 下载PDF
导出
摘要 电解水制氢将成为未来绿色制氢工业的核心技术。研究新型阴极材料以有效降低阴极过电位,对降低电解水能耗和设备成本、提高生产稳定性和安全性,具有十分重要的现实意义。本文主要对碱性水溶液电解制氢工业的析氢阴极材料进行综述。围绕电极结晶结构设计和尺寸结构设计两个主要的电极发展方向,重点介绍了3类基于电沉积制备技术的Ni基电极材料:合金析氢电极、复合析氢电极、多孔析氢电极。分析了当前析氢电极在实验研发与工业应用中存在的问题。指出采用电沉积法,制备催化活性更高且适用于工业电解环境的多元复合电极材料将是今后析氢电极发展的趋势。 Water electrolysis will become the core technology of environmental production for hydrogen industry in the future. It is very important to study new cathode materials for reducing the cathode overpotential. Because it not only can reduce energy consumption and the cost of water electrolysis,but also can enhance the stability and safety of production. This paper mainly discusses the research status of hydrogen electrode materials for alkaline water electrolysis. Based on the major improvement of catalytic activity for hydrogen evolution reaction,this paper mainly focuses on the electrodepositing preparation method for three kinds of nickel-based electrodes,which are alloy hydrogen evolution electrode,composite hydrogen evolution electrode,and porous hydrogen evolution electrode. The existing problems on hydrogen evolution electrode in experimental research and industrial application are analyzed. In the end,it is pointed out that the more catalytic activity and more stable electrochemical performance of multivariate composite electrodes based on electrodepositing preparation will be the future of hydrogen electrode development.
出处 《化工进展》 EI CAS CSCD 北大核心 2015年第10期3680-3687,3778,共9页 Chemical Industry and Engineering Progress
关键词 电解 制氢 催化 析氢电极 电沉积 electrolysis hydrogen production catalysis hydrogen evolution electrode electrolytic deposition
  • 相关文献

参考文献56

  • 1Lubitz W,Tumas W. Hydrogen:An overview[J].Chemical Reviews,2007,107(10):3900-3903.
  • 2王庆斌,薛贺来,赵宇,杨奇.工业水电解制氢技术的发展与应用[J].气体分离,2011,0(2):47-50. 被引量:4
  • 3Liu B,He J B,Chen Y J,et al. Phytic acid-coated titanium as electrocatalyst of hydrogen evolution reactionin alkaline electrolyte[J].International Journal of Hydrogen Energy,2013,38(8):3130-3136.
  • 4付银辉,黎学明,李武林,张君.Ni-Ru-Ir氧化物阴极涂层的析氢活性[J].电化学,2010,16(2):202-205. 被引量:1
  • 5王雯,黎学明,杨文静,付银辉,李武林.Ni/PdO/RuO_2复合型活性阴极的制备与表征[J].无机化学学报,2010,26(9):1633-1638. 被引量:4
  • 6邢家悟,康建忠,王玉兰,等. 活性阴极及其制备方法:中国,200610008084.9[P].2006-02-28.
  • 7Derek P,Li X H,Wang S P. A comparision of cathodes for zero gap alkaline water electrolysers for hydrogen production[J].International Journal of Hydrogen Energy,2012(37):7429-7435.
  • 8Kellenberger A,Vaszilcsin N,Brandl W. Roughness factor evaluation of thermal arc sprayed skeleton nickel electrodes[J].Journal of Solid State Electrochemistry,2007,11(1):84-89.
  • 9SeoY-S,JungY-S,YoonW-L,et al. The effect of Ni content on a highly active Ni-Al2O3 catalyst prepared by the homogeneous precipitation method[J].International Journal of Hydrogen Energy,2011,36(1):94-102.
  • 10Shumin H,Zhong Z,Yuan L,et al. The effect of vacuum evaporation platingon phase structure and electrochemical properties of AB5-5 mass% LaMg3 composite alloy[J].Electrochimica Acta,2005,50(28):5491-5495.

二级参考文献121

共引文献59

同被引文献174

引证文献26

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部