期刊文献+

多狭缝金属-介质-金属结构等离子体可见光分束器 被引量:4

Plasmonic Dichroic Splitter Based on Multi-Slits in MIM Structure
原文传递
导出
摘要 提出了金属-介质-金属(MIM)结构三缝、四缝波导结构的增强型可见光分束器。利用表面等离子体效应及经典光学干涉原理,改变多缝波导结构中的填充介质、结构厚度、狭缝宽度及缝宽度等参数,可使波长不同的两束可见光通过多缝亚波长结构后实现分束效果。利用时域有限差分(FDTD)法进行数值模拟,发现多狭缝结构比双缝结构有更高的分束比。上述设计结构可以通过电子束刻蚀系统等实验设备加工,可应用于集成光学及光通信领域。 improved plasmonic dichroic splitter based on three and four subwavelength metallic slits metal- insulator- metal(MIM) stuctures is proposed. Different visible lights passing through the multi-slits structure produce optical splitting effects by filling with different insulators and setting the slit width, thickness of the waveguide structure of multi-slits. The splitting effects are explained by using surface plasmon's principle and classical optics interference principle. Numerical simulation by the finite-difference time-domain (FDTD) method is conducted to verify the design. Compared to two subwavelength metallic slits structure, the higher splitting ratio can be achieved in multi-slits structures. Those MIM designs due to the advantage of simple structures can be obtained by using experimental equipment such as electron beam lithography. Therefore, it has good application in integrated optics and optical communication fields.
机构地区 江南大学理学院
出处 《激光与光电子学进展》 CSCD 北大核心 2015年第10期263-269,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(11504139 11347196) 江苏省自然科学基金(BK20140167) 江苏省大学生实践创新训练计划项目
关键词 光学器件 表面等离子体激元 分束器 金属-介质-金属结构 时域有限差分法 多狭缝 optical devices surface plasmon polaritons optical splitter metal-insulator-metal stucture finite - difference time - domain method multi - slits
  • 相关文献

参考文献20

  • 1顾本源.表面等离子体亚波长光学原理和新颖效应[J].物理,2007,36(4):280-287. 被引量:40
  • 2Lieberg B,Nylander C,Lundstrom I.Surface plasm on resonance for gas detection and biosensing[J].Sensors and Actuators,1983,4:299-304.
  • 3Viit T,Granqvist N,Hallila S,et al..Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing:A comparison between optical modeling and Drug-MDCKII cell interaction measurements[J].Plos One,2013,8(8):72192.
  • 4Huang Y,Xia L,Wei W,et al..Theoretical investigation of voltage sensitivity enhancement for surface plasmon resonance based optical fiber sensor with a bimetallic layer[J].Opt Communications,2014,333:146-150.
  • 5Usachev E V,Usacheva O V,Agranovski I E.Surface plasmon resonance-based bacterial aerosol detection[J].J Appl Microbiology,2014,117(6):1655-1662.
  • 6Luo L B,Xie C,Wang X H,et al..Surface plasmon resonance enhanced highly efficient planar silicon solar cell[J].Nano Energy,2014,9:112-120.
  • 7Chantana J,Yang Y,Sobajima Y,et al..Localized surface plasmon enhanced microcrystalline-silicon solar cells[J].J Non-crystalline Solids,2012,358(17):2319-2323.
  • 8Maier S A,Atwater H A.Plasmonics:localization and guiding of electromagnetic energy in metal/dielectric structures [J].J Appl Phys,2005,98(1):011101.
  • 9Noginov M A,Zhu G,Belgrave A M,et al..Demonstration of a spaser-based nanolaser[J].Nature,2009,460(7259):1110-1112.
  • 10Hecht B,Bielefeldt H,Novotny L,et al..Local excitation,scattering,and interference of surface plasmons[J].Phys Rev Lett,1996,77(9):1889-1892.

二级参考文献56

  • 1Raether H.Surface Plasmons.Berlin:Springer.1988
  • 2Dykhne A M et al.Phys.Rev.B,2003,67:195402
  • 3Barnes W I.J.Opt.A.Pure Appl.Opt.,2006,8:S87
  • 4Ebbesen T W et al.Nature,1998,391:667
  • 5Lezec H J et al.Science,2002,297:820
  • 6Thio T et al.Opt Lett.,2001,26:1972
  • 7Barnes W L,Dereux A,Ebbesen T W.Nature,2003,424:824
  • 8Caglayan H,Bulu I,Ozbay E.Opt.Exp.,2005,13:1666
  • 9Pendry J B.Phys.Rev.Lett.,2000,85:3966
  • 10Fang N,Lee H,Sun C et al.Science,2005,308:534

共引文献58

同被引文献24

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部