期刊文献+

轧制形变累积对超低碳低合金钢的组织演变研究 被引量:1

Microstructure Evolution of Ultra-low Carbon Low Alloy Steel by Rolling Deformation Cumulation
在线阅读 下载PDF
导出
摘要 板料轧制形变累积能细化材料的晶粒,影响材料力学参数。分别多道次轧制4 mm超低碳低合金钢板料到3和2 mm,获得了不同尺寸微观组织晶粒的板料。应用单向拉伸测试了材料的力学性能。计算了板料轧制应变累积量,分析了其对晶粒细化的作用。结果表明,应变累积量接近极限值0.6534时,铁素体晶粒变为细长状;在拉应力的作用下,最终晶粒被不断地细化,且显示方向性。由于粒状贝氏体晶粒细小,在极限的轧制形变累积量下,它不容易被细化。铁素体形变越大,屈服强度和抗拉强度就越高,而弹性模量和伸长率就越小,而粒状贝氏体晶粒对材料性能影响不明显。 Deformation accumulation of sheet rolling can refine material grains and affect mechanical parameters of material. Ultra-low carbon low alloy steel sheet was rolled in multi-pass from 4 mm to 3 mm or 2 mm, and the sheets of different grain microstructures were attained. The material mechanieal properties were tested by uniaxial tensile. Rolling accumulative strain was calculated. The effect of it on grain refinement was analyzed. The results indicate that when accumulative strain value closes to the limit 0.6534, the ferrite grains become slender;under the action of the tensile stress,the final grain is refined ceaselessly and displays direction. As grainy bainite grain is smaller, it is not easily refined at the limited cumulative deformation of the rolling. The greater ferrite deformation is, the higher yield strength and tensile strength are, and the smaller elasticity modulus and percentage of elongtation are. However the effect of granular bainite on material properties is not obvious.
出处 《热加工工艺》 CSCD 北大核心 2015年第19期131-133,共3页 Hot Working Technology
基金 安徽省教育厅自然科学研究重大项目(KJ2011ZD09) 安徽省自然科学基金面上项目(1308085ME77)
关键词 轧制 累积 应变 铁素体 晶粒 rolling accumulation strain ferrite grains
  • 相关文献

参考文献5

二级参考文献47

  • 1邓运来,张新明,唐建国,刘瑛,陈志永,周卓平.剪切变形方向特征对高纯铝箔轧制织构的影响[J].中国有色金属学报,2005,15(6):829-835. 被引量:8
  • 2彭倩,沈保罗.锆合金的织构及其对性能的影响[J].稀有金属,2005,29(6):903-907. 被引量:54
  • 3袁改焕,李恒羽,王德华.锆材在核电站的应用及前景[J].稀有金属快报,2007,26(1):14-16. 被引量:41
  • 4Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process [J]. Acta Metallurgica, 1999, 47(2): 579-583.
  • 5Valiev R Z, Korznikov A V, Mulyukov R R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation [J]. Materials Science and Engineering, 1993,108 A: 141-148.
  • 6Markushev M V, Murashkin M Yu. Structure and mechanical properties of commercial Al-Mg 1560 alloy after equal-channel angular extrusion and annealing [J]. Materials Science and Engineering, 2004,367A: 234-242.
  • 7Chen Y C, Huang Y Y, Chang C P, et al. The effect of extrusion temperature on the development of deformation microstructures in 5052 aluminum alloy processed by equal channel angular extrusion [J]. Acta Materialia, 2003, 51:2005-2015.
  • 8Gholinia A, Humphreys F J, Prangnell P B. Production of ultra-fine grain microstructures in Al-Mg alloys by conventional rolling [J]. Acta Materialia, 2002, 50:4461-4476.
  • 9Baxter G J, Furu T, Zhu Q. The influence of transient strain-rate deformation conditions on the deformed microstructure of aluminum alloy Al-1%Mg [J]. Acta Metallurgica, 1999, 47(8): 2367-2376.
  • 10Kumar K S, Swygenhoven H V, Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Materialia, 2003, 51:5743-5774.

共引文献16

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部