期刊文献+

基于差分隐私的权重社会网络隐私保护 被引量:25

Privacy preserving based on differential privacy for weighted social networks
在线阅读 下载PDF
导出
摘要 针对权重社会网络发布隐私保护中的弱保护问题,提出一种基于差分隐私模型的随机扰动方法可实现边及边权重的强保护。设计了满足差分隐私的查询模型-WSQuery,WSQuery模型可捕获权重社会网络的结构,以有序三元组序列作为查询结果集;依据WSQuery模型设计了满足差分隐私的算法-WSPA,WSPA算法将查询结果集映射为一个实数向量,通过在向量中注入Laplace噪音实现隐私保护;针对WSPA算法误差较高的问题提出了改进算法-LWSPA,LWSPA算法对查询结果集中的三元组序列进行分割,对每个子序列构建满足差分隐私的算法,降低了误差,提高了数据效用。实验结果表明,提出的隐私保护方法在实现隐私信息的强保护同时使发布的权重社会网络仍具有可接受的数据效用。 Focusing on the weak protection problems in privacy preservation of weighted social networks publication, a privacy preserving method based on differential privacy was put forward for strong protection of edges and edge weights. The WSQuery query model was proposed meeting with differential privacy on weighted social networks, could capture the structure of weighted social networks and returned the triple sequences as the query result set. The WSPA algorithm was designed according to the WSQuery model, could map the query result set into a real mmaber vector and injected Laplace noise into the vector to realize privacy protection. The LWSPA algorithm was put forward because of the high error of the WSPA algorithm, partitioned the triples sequence of the query results into multiple subsequences, constructed the algorithms for each subsequence according with differential privacy and reduced the error and improved the data util- ity. The experimental results demonstrate that the proposed method can provide strong protection for privacy information, simultaneously the utility of the released weighted social networks is still acceptable.
出处 《通信学报》 EI CSCD 北大核心 2015年第9期145-159,共15页 Journal on Communications
基金 国家自然科学基金资助项目(61003288 61111130184) 国家教育部博士点基金资助项目(20093227110005) 江苏省普通高校研究生科研创新计划基金资助项目(CX10B_006X)~~
关键词 权重社会网络 隐私保护 差分隐私 查询模型 LAPLACE分布 weighted social network privacy preserving differential privacy query model Laplace distribution
  • 相关文献

参考文献34

  • 1ZHELEVA E, GETOOR L. Preserving the privacy of sensitive rela- tionships in graph data [J]. Lecture Notes in Computer Science, 2008, 4890: 153-171.
  • 2CAMPAN A, TRUTA T M.Data and structural k-anonymity in social networks [J]. Lecture Notes in Computer Science, 2009,5456:33-54.
  • 3CORMODE C~ SRIVASTAVA D, YU T. Anonymizing bipartite graph data using safe groupings[J]. VLDB Journal, 2010,19(1):115-139.
  • 4SIHAG V K. A clustering approach for structural k-anonymity in social networks using genetic algorithm[A]. Proceeding of the Interna- tional Information Technology Conference[C]. CUBE, ACM, 2012. 701-706.
  • 5TASSA T, COHEN D. Anonymization of centralized and distributed social networks by sequential clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2013,25 (2) :311-324.
  • 6BABU K S, JENA S K. Anonymizing social networks: a generalization approach[J]. Computers & Electrical Engineering, 2013, 39(7): 1947-1961.
  • 7HSU T, LIAU C J, WANG D W. A logical framework for pri- vacy-preserving social network publication[J].Journal of Applied Logic, 2014, 12(2): 151-174.
  • 8KULKARNI A R, YOGISH H K. Advanced unsupervised anonymiza- tion technique in social networks for privacy preservation[J]. Interna- tional Journal, 2014.118-125.
  • 9ZHOU B, PEI J. Preserving privacy in social networks against neigh- borhood attacks[A]. Proceeding of ICDE'08[C]. Cancun, Mex-ico,2008.506-515.
  • 10LIU K, TERZI E. Towards identity anonymization on graphs[A]. Proceedings of SIGMOD'08[C]. ACM, 2008.93-106.

二级参考文献1

共引文献254

同被引文献117

  • 1李阳,王晓岩,王昆,沙瀛.基于社交网络的安全关系研究[J].计算机研究与发展,2012,49(S2):124-130. 被引量:10
  • 2邓智群,刘福,慕德俊,唐三平.网络隔离体系结构研究[J].计算机应用研究,2005,22(5):219-221. 被引量:21
  • 3杨楠,林松祥,高强,孟小峰.一种从马尔可夫聚类簇发现潜在WEB社区特征的方法[J].计算机学报,2007,30(7):1086-1093. 被引量:5
  • 4WU X, YING X, LIU K. A survey of privacy-preservation of graphs and social networks[M]. Managing and mining graph data. Springer US, 2010: 421-453.
  • 5CASAS-ROMA J, HERRERA-JOANCOMARTI J, TORRA V. Ano- nymizing graphs: measuring quality for clustering[J]. Knowledge & Information Systems, 2015, 44(3): 1-22.
  • 6BHAGAT S, CORMODE C, KRISHNAMURTHY B Class based graph anaonymization for social network data[C]//35th International Conference on Very Large Data Base. c2009: 766-777.
  • 7WANG R, ZHANG M, FENG D, et al. A clustering approach for pri- vacy-preserving in social networks[C]//Information Security and Cryptol- ogy-ICISC 2014. Springer International Publishing, c2014:193-204.
  • 8JING Y, GOSSWEILER III R C. Using visualization techniques for adjustment of privacy settings in social networks[P]. US8832567. 2014.
  • 9AGGARWAL C C, LI Y, YU P S. On the anonymizability of graphs[J]. Knowledge & Information Systems, 2015, 45(3):571-588.
  • 10KARWA V, SLAVKOVIC A B, KRIVITSKY P N. Differentially pri- vate exponential random graphs[C]//Privacy in Statistical Data- base-UNESCO Chair in Data Privacy, International Conference, PSD 2014. Ibiza, Spain, c2014: 143-155.

引证文献25

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部