期刊文献+

低弹性模量亚稳β型Ti-38Nb合金的微观组织与力学行为 被引量:4

Microstructure and Mechanical Behavior of β-Type Ti-38Nb Alloy with Low Modulus
原文传递
导出
摘要 报道了一种兼具低弹性模量和高强度的新型亚稳β型Ti-38Nb(%,质量分数)合金,并系统地研究了热-机械处理对合金微观组织及力学行为的影响。研究结果表明,Ti-38Nb合金经固溶处理后,由于合金中β稳定化元素含量不足,高温β相并没有完全保留至室温,合金中生成了大量的α″马氏体。此时,Ti-38Nb合金在较低的应力水平下(约207 MPa)便发生了马氏体变体的再取向和应力诱发马氏体相变,故无法满足生物医用材料对高强度的要求。经冷轧和673 K退火40 min后Ti-38Nb合金中引入了大量的位错和晶界,高密度的位错和晶界有效地抑制了ω相的析出和α″马氏体的产生。此时,β稳定化元素含量低的高温β相被稳定至室温,合金实现了低弹性模量(56 GPa)和高强度(拉伸强度1020 MPa)的良好匹配。因此,Ti-38Nb合金由于其低弹性模量和高强度特性有望在生物医用植入材料领域获得应用。 A metastable β-type Ti-38Nb (% , mass fraction) alloy with a combination of low modulus and high strength was repor- ted, and the effect of thermo-rnechanical treatment on its microstmcture and mechanical behavior was also investigated systematically. It was found that in the solution-treated state, the high-temperature β phase cannot be completely retained at room temperature due to the occurrence of transformation from β to α" martensite caused by its low content of β-stabilizers ( i. e. Nb). The solution-treated alloy exhibited low strength of 207 MPa due to stress-induced α" martensitic transformation and the reorientation of α" martensite. After a severe cold rolling and annealing, high-density of dislocations and grain boundaries existed in the Ti-38Nb alloy, resulting in the suppression of the α" martensitic transformation and the retarding of the precipitation of ω. As a result, overwhelming majority of β phases with low content of β-stabilizers were retained at room temperature. In such a case, an excellent combination of low elastic modulus ( - 56 GPa) and high ultimate tensile strength( - 1020 MPa)was achieved in the binary Ti-38Nb alloy, which made it a high potential for biomedical applications.
出处 《稀有金属》 EI CAS CSCD 北大核心 2015年第9期769-774,共6页 Chinese Journal of Rare Metals
基金 国家自然科学基金项目(51401088) 江苏省自然科学基金项目(BK20140549) 中国博士后科学基金面上项目(2014M561580)资助
关键词 亚稳Β钛合金 低弹性模量 Ω相 metastable β Ti alloy low modulus ω phase
  • 相关文献

参考文献19

  • 1Niinomi M. Mechanical properties of biomedical titani- um alloys [ J ]. Materials Science and Engineering A, 1998, 243: 231.
  • 2Geetha M, Singh A K, Asokamani R, Gogia A K. Ti based biomaterials the ultimate choice for orthopaedic im- plants-A review [ J ]. Progress in Materials Science, 2008, 54: 397.
  • 3许瑞华,黎向锋,左敦稳,王宏宇,江世好,李建忠.扫描速度对钛合金NiCoCrAlY熔覆涂层显微组织及硬度的影响[J].稀有金属,2014,38(5):807-812. 被引量:18
  • 4Huiskes R, Weinans H, Riebergen B. The relation- ship between stress shielding and bone resorption around total hip stems and the effects of flexible materials [ J ]. Clinical Orthopaedics and Related Research, 1992, 274 : 124.
  • 5GuoS, BaoZZ, MengQK, HuL, ZhaoXQ. Ano- vel metastable Ti-25Nb-2Mo-4Sn alloy with high strength and low Young's modulus [ J]. Metallurgical and Mate- rials Transactons A, 2012, 43: 3447.
  • 6Dipankar B, Williams J C. Perspectives on titanium science and technology [J]. Acta Materialia, 2013, 61 : 844.
  • 7Meng Q K, Guo S, Ren X B, Xu H B, Zhao X Q. Possible contribution of low shear modulus CA4 to the low Young's modulus of Ti-36Nb-5Zr alloy [ J]. Applied Physics Letters, 2014, 105: 131907.
  • 8Ping D H, Mitarai Y, Yin F X. Microstructure and shape memory behavior of a Ti30Nb3Pd alloy [ J ]. Scripta Materialia, 2005, 52: 1287.
  • 9辛选荣,赵文龙,谢田.TB8钛合金常温压缩应力应变曲线分析[J].锻压技术,2014,39(1):126-130. 被引量:12
  • 10Ohmori Y, Ogo T, Nakai K. Effects of co-phase pre- cipitation on c, ct" transformations in a metastable titanium alloy [ J ]. Materials Science and Engineering A, 2001, 312: 182.

二级参考文献28

  • 1叶文君,全桂彝.TB8钛合金板材的焊接性[J].金属学报,2002,38(z1):302-304. 被引量:4
  • 2CAI Lifang ZHANG Yongzhong SHI Likai.Microstructure and formation mechanism of titanium matrix composites coating on Ti-6Al-4V by laser cladding[J].Rare Metals,2007,26(4):342-346. 被引量:23
  • 3付华,张光磊.材料性能学[M].北京:北京大学出版社.2010.66-74.117.
  • 4Azkune M, Puente I, Insausti A, Effect of ambient temperature on the redistribution of loads during construction of multi-storey concrete structures [ J]. Engineering Structures, 2007, 29 (6): 933 - 941.
  • 5Uy B, Das S. Wet concrete loading of thin-walled steel box col- umns during the construction of a tall building [ J ]. Journal of structural Engineering, 1997, 42 (2) : 95 - 119.
  • 6ZhangKM, ZouJX, LiJ, YuZS, WangH. Synthe- sis of Y2O3 particle enhanced Ni/TiC composite on TC4Ti alloy by laser cladding [ J ]. Transactions of Nolffer- rous Metals Society of China, 2012, 22(8) : 1817.
  • 7Wang W F, Wang M C, Jie Z, Sun F J, Huang D W. Research on the mierostructure and wear resistance of ti- tanium alloy structural members repaired by laser clad- ding [J].Optics and Lasers in Engineering, 2008, 46 (11) : 810.
  • 8Seraffon M, Simms N J, Sumner J, Nieholls J R. The development of new bond coat compositions for thermal barrier coating systems operating under industrial gas tur- bine conditions [ J]. Surface and Coatings Technology, 2011, 206(7) : 1529.
  • 9Meng Q, Geng L, Ni D R. Laser cladding NiCoCrA1Y coating on Ti-6A1-4V [ J]. Materials Letters, 2005, 59 (22) : 2774.
  • 10Waki H, Kobayashi A. Influence of the mechanical properties of NiCoCrA1Y under-coating on the high tem- perature fatigue life of YSZ thermal-barrier-coating sys- tem [J]. Vacuum, 2008, 83(1): 171.

共引文献27

同被引文献25

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部