期刊文献+

Jetson TK1平台实现快速红外图像背景预测算法 被引量:7

Efficient infrared image background prediction with Jetson TK1
在线阅读 下载PDF
导出
摘要 红外弱小目标的探测与跟踪对运算硬件和算法的性能提出较高的要求。针对传统背景预测算法串行运算耗时较长的问题,以及经典的通用GPU(Graphic Processing Unit)体积与功耗过大难于整合到红外设备中的问题,提出在嵌入式GPU平台NVIDIA Jetson TK1中实现并行分离卷积的方法,利用CUDA(Compute Unified Device Architecture)实时执行背景预测算法,实现了在嵌入式GPU平台上高效的红外背景预测算法。实验结果表明,在保证正确预测背景的前提下,利用小体积、低功耗的嵌入式GPU平台可以将运算性能提高到串行运算的15倍以上。 For infrared small target detection and tracking, it requires very high efficiency of both hardware and algorithm. Since the classic background prediction algorithm is a serial one, which is very time consuming. Considering that common GPUs(Graphic Processing Units) are big in size and too power consuming to be integrated into an infrared device. The implement background prediction algorithm was proposed with separable convolution template method on the embedded GPU platform, named NVIDIA Jetson TK1. Taking advantage of CUDA(Compute Unified Device Architecture) programming language to execute background prediction algorithm in parallel, an operable and high performance result on board was achieved, which gained a 15x speedup comparing to the serial way with a CPU.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第9期2615-2621,共7页 Infrared and Laser Engineering
基金 国家自然科学基金(61301290)
关键词 红外探测 快速运算 背景预测 Jetson TK1 CUDA infrared detection high performance computation background prediction Jetson TK1 CUDA
  • 相关文献

参考文献10

  • 1陈晓斯,程正东,樊祥,朱斌,方义强,丁磊.基于k-最近邻的红外点目标检测方法(英文)[J].红外与激光工程,2013,42(S02):312-316. 被引量:2
  • 2万磊,曾文静,张铁栋,秦再白.基于梯度信息融合的海面红外目标实时检测[J].红外与激光工程,2013,42(1):41-45. 被引量:7
  • 3Changcai Yanga, Jiayi Mab, Zhang Meifang, et al. Multiscale facet model for infrared small target detection [J]. Infrared Physics & Technology, 2014(67): 202-209.
  • 4Tae-Wuk Bae. Small target detection using bilateral filter and temporal cross product in infrared images [J]. Infrared Physics & Technology, 2011(54): 403-411.
  • 5Wu Xin, Zhang Jianqi, Huang Xi, et al. Separable convolution template (SCT) background prediction accelerated by CUDA for infrared small target detection [J].Infrared Physics & Technology, 2013(60): 300-305.
  • 6Chen Yu, Yu Yah Xin, Zhao Ting, et al: The method of infrared point target detection and tracking based on DSP +FI~A [J]. Applied Mechanics and Materials, 2013(457): 1272-1277,.
  • 7Nvidia. Bringing GPU-accelerated computing to embedded systems [EB/OL]. [2014-04]. http://developer.download. nvidia, com/embedded/j etson/TK1/docs/Jetson platform brief_ May2014.pdf.
  • 8Nvidia. PM375 module specification [EB/OL]. [2014-05- 02]. http://developer, download.nvidia.com/embedded/jetson/ TK1/2014-03-24/JetsonTK1_Module Specification_ PM375_ Vl.01.pdf.
  • 9Jason Sanders, Edward Kandrot. CUDA by Example: an Introduction to General-Purpose GPU Programming [M]. Boston: Addison-Wesley, 2010.
  • 10Shane Cook. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs [M]. Waltham: Addison- Wesley, 2010.

二级参考文献14

共引文献7

同被引文献42

引证文献7

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部