期刊文献+

一种多策略融合的多目标粒子群优化算法 被引量:30

A Multi-Objective Particle Swarm Optimization Algorithm Integrating Multiply Strategies
在线阅读 下载PDF
导出
摘要 为提高多目标粒子群算法在解决复杂多目标优化问题中的整体性能,提出一种多策略融合的多目标粒子群算法.该算法采用均匀化与随机化相结合的方式初始化种群,在粒子速度更新中新增一扰动项,运用简化的k-最近邻方法维持档案以及对档案个体赋予生存期属性并动态调整生存期值.实验结果表明,在GD和SP性能指标上,本文算法与另外5种对等算法在ZDT和DTLZ系列测试问题上进行对比,其表现出了总体显著性的性能优势. In order to improve the overaU performance of multi-objective particle swarm optimization algorithm (MOPSO) in solving complicated multi-objective optimization problems, a multi-objective particle swarm optimization algorithm integrating multiply strategies (MSMOPSO) was proposed in the paper. A new initialization approach of combining uniformization and randomizafion was adopted in the MSMOPSO. Secondly, a disturbance item was added to the particle' s velocity updating formula. Thirdly, a simplified k-nearest neighbor approach was applied to preserve the diversity of external archive. Finally, every non-dominated particle in the external archive was assigned the property of lifespan and the lifespan value would be adjusted dynamically during the run of the MSMOPSO. The experimental results illustrate that the proposed algorithm significantly outperforms the other five peer competitors in terms of GD, SP on ZDT and DTLZ test instances set.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第8期1538-1544,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61165004) 国家自然科学基金重大研究计划培育项目(No.91230118) 江西省自然科学基金(No.20114BAB201025) 江西省教育厅科技项目(No.GJJ12307 No.GJJ14373)
关键词 粒子群优化 多策略融合 多目标优化问题 多目标粒子群优化算法 particle swarm optimization integrating multiply strategies multi-objective optimization problem multi-objective particle swarm optimization algorithm
  • 相关文献

参考文献12

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Proc of the 1EEE International Conference on Neural Networks[ C]. Piscataway: IEEE Press, 1995.1942 - 1948.
  • 2Coello Coello C A, Pulido G T, Lechuga M S. Hand/ing multiple objectives with particles swarm onizafiorl[J]. q]-ansactions on Evolutionary Con--lmtation,2004,8(3):256- 279.
  • 3Sierra M R, Coello Coello C A. Improving PSO-based multi- objective optimization using crowding, mutation and e-domi- nance [ A ]. Proceedings of 3rd International Conference on Evolutionary Multi-cn'terion Optimization [ C ]. Berlin: Springer, 2005.505 - 519.
  • 4Yen GG, Leong WF. Dynamic multiple swarms in multiobjec- five particle swarm optimization [ J ]. mEE Transacations on System, Man, Cybernetics,Part A,2009,39(4) :890- 911.
  • 5Xuewen Xia, Jingnan Liu, Zhongbo Hu. An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space[ J]. Applied Soft Computing, 2014,23: 76 - 90.
  • 6Ziflzer E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[ A]. Proceedings of In- ternational Conference on Evolutionary Method for Design, Optimization and Control with Applications to Industrial Prob- lems[ C ]. Berlin: Springer, 21302.95 - 100.
  • 7Deb K,Pratab A,Agarwal S,et al.A fast and elitist multi-ob- jective genetic algorithm: NSGA-I/[ J]. IEEE Transactions on Evolutionary Cornputation, 2002,6(2) : 182 - 197.
  • 8Qingfu Zhang,Hui Li. MOEA/D: A multi-objective evolution- ary algorithm based on decomposition[ J]. 1EEE Transactions on Evolutionary Computation, 2007,11 (6) : 712 - 731.
  • 9Zitler E, Deb K, Thiele L. Comparison of multi-objective evo- lutionary algorithms: Empirical results[ J]. Evolutionary Compu- tation,2000,8:173 - 195.
  • 10Deb K, Thiele L, Laumanns M, Zitzler E. Scalable multi-ob- jective optimization test problems [ A ]. Proc of the IEEE Congress on Evolutionary Computation ( CEC 2002) [ C ]. Pis- cataway: IEEE Service Center,2002. 825 - 830.

同被引文献189

引证文献30

二级引证文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部