期刊文献+

基于时变AR模型的非平稳非高斯随机过程的数值模拟 被引量:4

Simulation of non-stationary non-Gaussian stochastic process based on a time-varying AR model
在线阅读 下载PDF
导出
摘要 为了有效地模拟具有目标非平稳、非高斯特征的随机过程,提出了基于时变AR模型的非平稳非高斯随机过程的模拟方法。该方法首先需要建立实现非高斯与高斯随机过程之间相互转换的非线性平移关系,然而该非线性平移也会导致平移前后高斯与非高斯随机过程的功率谱发生变化。因此该方法还需要进一步建立平移前后高斯与非高斯随机过程的功率谱或相关函数的转换关系。然后,通过已建立的非线性平移,以及功率谱或相关函数的转换关系,可将非平稳非高斯随机过程的模拟转化成对非平稳高斯随机过程的模拟。而非平稳高斯随机过程可通过建立的时变AR模型进行有效的模拟。最后将具有目标非平稳、非高斯特征的脉动风速模拟作为数值算例,验证了该方法模拟非平稳非高斯随机过程的有效性。 In order to simulate effectively a stochastic process possessing given non-stationary non-Gaussian features,a method to simulate a non-stationary non-Gaussian stochastic process based on a time-varying AR model was proposed here.Firstly,it was necessary to establish a nonlinear translation relationship to realize mutual conversion between a non-Gaussian and a Gaussian one.Meanwhile,the power spectra both the non-Gaussian and the Gaussian random processes were different due to the nonlinear translation.Furthermore,the transformation relationship between their power spectra or correlation functions was established.Then,the simulation of a non-stationary non-Gaussian stochastic process was converted into a simulation of a non-stationary Gaussian random process by utilizing the nonlinear translation relationship and the transformation relationship of their power spectra or correlation functions constructed above.The non-stationary Gaussian random process was effectively simulated with a presented time-varying AR model.Finally,taking the simulation of a fluctuating wind velocity possessing target non-stationary non-Gaussian characteristics as a numerical example,the effectiveness of the method to simulate a non-stationary non-Gaussian random process was verified.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第17期142-146,160,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(11162005) 江西省自然科学基金项目(20132BAB216003)
关键词 时变AR模型 数值模拟 非平稳随机过程 非高斯 脉动风速 time-varying AR model numerical simulation non-stationary stochastic process non-Gaussian fluctuating wind velocity
  • 相关文献

参考文献13

  • 1Acharjee S, Zabaras N. Uncertainty propagation in finite deformations-a spectral stochastic Lagrangian approach [ J ]. Computer Methods in Applied Mechanics and Engineering, 2006, 195 : 2289 -2312.
  • 2Spanos P D, Zeldin B A. Monte Carlo treatment of random fields: a broad perspective [ J ]. Applied Mechanics Reviews, 1998, 51:219 -237.
  • 3李锦华,陈水生.非高斯随机过程模拟与预测的研究进展[J].华东交通大学学报,2011,28(6):1-6. 被引量:9
  • 4李锦华,李春祥,申建红.非平稳脉动风速的数值模拟[J].振动与冲击,2009,28(1):18-23. 被引量:19
  • 5舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,9(4):27-32. 被引量:127
  • 6Deodatis G, Micaletti R C. Simulation of highly skewed non- Gaussian stochastic processes [ J ]. Journal of Engineering Mechanics ASCE, 2001, 127(12) : 1284 - 1295.
  • 7Owen J S, Eccles B J, Choo B S, et al. The application of auto-regressive time series modeling for the time-frequency analysis of civil engineering structures [ J ]. Engineering Structures, 2001,23:521 - 536.
  • 8Samaras E, Shinozuka M, Tsurui A. ARMA representation of random process [ J 1. Journal of Engineering Mechanics ASCE, 1985, 111(3):449-461.
  • 9张文福,谢丹,刘迎春,计静.下击暴流空间相关性风场模拟[J].振动与冲击,2013,32(10):12-16.
  • 10Li J H, Li C X. Simulation of non-gaussian stochastic process with target power spectral density and lower-order moments [J]. Journal of Engineering Mechanics ASCE, 2012, 138 (5) :391 -404.

二级参考文献94

  • 1瞿伟廉,王锦文.下击暴流风荷载的数值模拟[J].武汉理工大学学报,2008,30(2):70-74. 被引量:15
  • 2张文福,谢丹,刘迎春,计静.下击暴流空间相关性风场模拟[J].振动与冲击,2013,32(10):12-16.
  • 3王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52. 被引量:209
  • 4Priestley M B. Evolutionary spectra and nonstationary processes [J]. J. R. Stat. Soc. Ser. B (Methodol.), Series B, 1965,27, 204-237.
  • 5Priestley M B. Power spectral analysis of non-stationary random processes [J]. J. Sound Vib. , 1967,6, 86-97.
  • 6Yeh C H, Wen Y K. Modelling of nonstationary ground motion and analysis of inelastic structural response [ J]. Struct. Safety, 1990,8,281-298.
  • 7Li Y, Kareem A. Simulation of multivariate nonstationary random processes by FFT [ J]. J. Engrg. Mech., ASCE, 1991; 117 (9), 1037-1058.
  • 8Grigoriu M. Simulation of nonstationary Gaussian processes by random trigonometric polynomials [J]. J. Engrg. Mech., ASCE, 1993 ; 119 (2), 328-343.
  • 9Deodatis G. Non-stationary stochastic vector processes: Seismic ground motion applications [ J ]. Probab. Eng. Mech. , 1996; 11(3), 149-168.
  • 10Li Y, Kareem A. Simulation of multivariate nonstationary random processes: hybrid DEF and digital filtering approach [J]. J. Engrg. Mech., ASCE, 1997; 123 (12),1302-1310.

共引文献166

同被引文献27

  • 1孙钰,袁强,温小飞,董良雄,鲁永强.基于雨流计数法及Corten Dolan准则的轴承疲劳寿命预测[J].船舶工程,2020,42(1):68-73. 被引量:14
  • 2Yeh C H, Wen Y K. Modeling of Nonstationary Gro- und Motion and Analysis of Inelastic Structural Re- sponse[J]. Structural Safety, 1990, 8(1): 281-298.
  • 3Kubo T, Penzien J. Simulation of Three-Dimensional Strong Ground Motions Along Principal Axes, San Fernando Earthquake[J]. Earthquake Engineering Structural Dynamics, 1979, 7(3) : 279-294.
  • 4Lin Y K, Yong Y. Evolutionary Kanai-Tajimi Earth- quake Models[J]. Journal of Engineering Mechanics, 1987, 113(8): 1 119-1 137.
  • 5Der Kiureghian A, Crempien J. An Evolutionary Mod- el for Earthquake Ground MotionFJ. Structural Safe- ty, 1989, 6(2): 235-246.
  • 6Conte J P, Peng B F. Fully Nonstationary Analytical Earthquake Ground-Motion Model[J]. Journal of En- gineering Mechanics, 1997, 123(1): 15-24.
  • 7Symans M D, Constantinou M C. Passive Fluid Vis- cous Damping Systems for Seismic Energy Dissipation [J]. ISET Journal of Earthquake Technology, 1998, 35(4) ; 185-206.
  • 8Ma C F, Zhang Y H, Tan P, et al. Non-Stationary Seismic Response Analysis of Base-Isolated Buildings with Many Hysteretic Devices [J]. Computers Structures, 2013, 123(1). 39-47.
  • 9张文福,马昌恒,肖岩.风场模拟中AR模型的若干问题[J].计算力学学报,2009,26(1):124-130. 被引量:17
  • 10李璟,韩大建.大跨度屋盖结构非高斯风压场的一种模拟方法[J].工程力学,2009,26(5):80-87. 被引量:9

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部