期刊文献+

径向拉伸面上磁流体边界层流方程的有限元数值解

Galerkin Finite Element Numerical Solutions for the Hydromagnetic Boundary Layer Flow due to a Radially Stretching Surface
在线阅读 下载PDF
导出
摘要 研究流经径向拉伸面上的磁流体引起的稳定的二维边界层流的剪切力,利用一个等价变换将磁流体边界层流控制方程转化成与之等价的奇异积分方程,再利用Galerkin有限元方法将其转化成非线性方程组,最后利用Newton迭代法求解该非线性方程组的数值解,从而获得参数M取不同数值时该问题中流体剪切力的相应数值结果,并将该数值结果与前人的结果作比较。结果显示,该数值结果与前人结论基本一致,这说明Galerkin有限元方法也是一种解决磁流体边界层流的好方法。 The shear stress of the steady two-dimensional boundary layer flow of a hydromagnetic flow due to a radially stretching surface is investigated. The boundary layer equations governing the flow are transformed into a singular equation by using suitable equivalent transformations. The equation is then turned to nonlinear equations by using Galerkin finite element method. At last, the numerical solutions for the nonlinear equations are estimated through Newton iterative method. It is obtained the shear stress of this fluid corresponding to the parameter M different values. Moreover, the results are compared with previous conclusions through table. It' s shown that the numerical results and previous solution is consistent. This means that the Galerkin finite element method is a good method to solve the hydromagnetic boundary layer flow.
作者 胡敏
出处 《西昌学院学报(自然科学版)》 2015年第3期8-11,14,共5页 Journal of Xichang University(Natural Science Edition)
基金 四川省自然科学基金项目(项目编号:15ZB0419) 攀枝花市自然科学基金项目(项目编号:2014CY-G-22) 攀枝花学院项目(项目编号:2014YB40)
关键词 径向拉伸面 磁流体边界层流 GALERKIN有限元法 NEWTON迭代法 数值解 radially stretching surface hydromagnetic boundary layer flow Galerkin finite element method Newton iterative method numerical solutions
  • 相关文献

参考文献8

二级参考文献31

  • 1Wang C Y 1990 Quart. Appl. Math. 48 601.
  • 2Andersson H I, Aarseth J B and Dandapat B S 2000. Int. J. Heat Mass Transl. 43 69.
  • 3Liu I C and Andersson H I 2008 Int. J. Therm. Sci. 47 766.
  • 4Wang C 2006 Heat Mass Transl. 42 759.
  • 5Dandapat B S, Santra B and Andersson H I 2003 Int. J. Heat Mass Transf. 46 3009.
  • 6Chen C H 2007 Phys. Lett. A 370 51.
  • 7Noor N F M, Abdulaziz O and Hashim I 2010 Int. J. Numer. Meth. Fluids 63 357.
  • 8Noor N F M and Hashim I 2010 Int. J. Heat Mass Transf. 53 2044.
  • 9Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall).
  • 10Liao S J 2004 Appl. Math. Comput. 147 449.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部