期刊文献+

复杂网络结构比对算法研究进展 被引量:1

Advances in algorithms for construction alignment of complex networks research
在线阅读 下载PDF
导出
摘要 复杂网络的结构比对问题在生物科学、计算机科学和社会科学等多个领域都具有很重要的现实意义。近年来涌现出了很多针对不同类型复杂网络的结构对比算法,对现有的网络结构比对算法进行梳理,重点分析了基于图的网络结构比对方法和基于数学框架网络结构比对方法。对这2种方法的特点进行了总结与比较,重点阐述了网络结构比对研究中的关键问题,分析和总结了现有的网络结构比对算法,阐述了网络结构比对中优势和不足。以此为基础提出了复杂网络结构比对问题未来的研究方向。 The construction alignment of complex networks problems in biological science、computer science、social science and other fields have practical signification. In recent years,different types of construction alignment of complex networks have been sprung up. In this paper,we mainly analysed the construction alignment algorithms based on graph and construction alignment algorithms and mathematical framework. Illustrating the key problem in the study of the networks alignment algorithm is analyzed and compared the algorithms of construction alignment.We explained their advantages and disadvantages,at last we forecast the future progress of algorithms for construction alignment of complex networks.
出处 《智能系统学报》 CSCD 北大核心 2015年第4期508-517,共10页 CAAI Transactions on Intelligent Systems
基金 吉林省重点科技攻关项目(20140204046) 生物芯片自动识别系统(20100505)
关键词 复杂网络 二次规划 拓扑结构识别 图论 比对 网络分析 结点集群性 动态分析 complex networks quadratic programming topology identification graph theory alignment network analysis node cluster dynamic analysis
  • 相关文献

参考文献71

  • 1STELZL U, WORM U, LALOWSKI M, et al. A human protein-protein interaction network: a resource for annota- ting the proteome[ J 1. Cell, 2005, 122 (6) : 957-968.
  • 2REN B, ROBERT F, WYRICK J J, et al. Genome-wide lo- cation and function of DNA binding proteins [ J ]. Science, 2000, 290 (5500) : 2306-2309.
  • 3MICHOEL T, NACHTERGAELE B. Alignment and integra- tion of complex networks by hypergraph-based spectral clus- tering[J]. Physical Review E, 2012, 86 (5) : 056111.
  • 4ERDO S P, R NYI A. On the evolution of random graphs [ J]. American Mathematical Society, 1960, 517-561.
  • 5BONNICI V, GIUGNO R, PULVIRENTI A, et al. A sub- graph isomorphism algorithm and its application to biochemi- cal data [ J ]. BMC bioinformatics, 2013, 14 ( Suppl 7) : S13.
  • 6KHAN A M, GLEICH D F, POTHEN A, et al. A mul- tithreaded algorithm for network alignment via approximate matching[ C]//2012 International Conference on proceed- ings of the High Performance Computing, Networking, Stor- age and Analysis (SC). 2012.
  • 7TODOR A, DOBRA A, KAHVECI T. Probabilistic biologi- cal network alignment [ J ]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2013, 10 (1) : 109-121.
  • 8SHVAIKO P, EUZENAT J. Ontology matching: state of the art and future challenges [ J ]. IEEE Transactions on Knowl- edge and Data Engineering, 2013, 25 (1) : 158-176.
  • 9BOCK J, HETTENHAUSEN J. Discrete particle swarm op- timisation for ontology alignment [ J ]. Information Sciences, 2012, 192: 152-173.
  • 10HU W, JIAN N, QU Y, et al. Gmo: a graph matching for ontologies [ C ]//proceedings of the Proceedings of K-CAP Workshop on Integrating Ontologies. 2005: 42-48.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部