期刊文献+

用基于二值化规范梯度的跟踪学习检测算法高效跟踪目标 被引量:3

Efficient target tracking by TLD based on binary normed gradients
在线阅读 下载PDF
导出
摘要 为提高复杂环境下TLD(Tracking-Learning-Detection)算法的跟踪精度和速度,提出基于二值化规范梯度(BING)的高效TLD目标跟踪算法。在跟踪器中引入基于时空上下文的局部跟踪器失败预测方法和全局运动模型评估算法,提高了跟踪器准确度和鲁棒性;用BING算法取代滑动窗口搜索策略,结合级联分类器实现目标检测,减少了检测器的检测范围,提高了检测的处理速度;将训练样本权重整合到在线学习过程中,改进级联分类器的分类准确度,解决了目标漂移问题。对不同的图片序列实验结果表明:本算法的跟踪正确率达85%,帧率达19.79frame/s。与原始TLD算法及其他主流跟踪算法相比较,该算法在复杂环境下具有更高的鲁棒性、跟踪精度及处理速度。 To improve the tracking precision and processing speed of the Tracking-Learning-Detection(TLD)algorithm under a complex environment,an efficient TLD target tracking algorithm based on BInary Normed Gradient(BING)algorithm was proposed.The local tracker failure predicting method based on spatial-temporal context and the global motion model estimation algorithm was introduced into the tracker to improve its precision and robustness.Then,the BING algorithm was used to replace a sliding window for searching the target to detect the candidate target by combining with a cascaded classifier,so that to reduce the search space and improve the processing speed of the detector.The sample weight was integrated into the online learningprocedure to improve the accuracy of the classifier and to alleviate the drift to some extents.The experimental results on variant sequences demonstrate that the accurate rate and the frame rate of the improved TLD are85%and 19.79frame/s,respectively.Compared with original TLD and state-of-the-art tracking algorithm under the complex environment,the improved TLD has the superior performance on robustness,tracking precision and tracking speeds.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第8期2339-2348,共10页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61172111) 吉林省科技厅资助项目(No.20090512 No.20100312)
关键词 目标跟踪 跟踪-学习-检测 二值化规范梯度 加权 target tracking Tracking-Learning-Detection(TLD) BInary Normed Gradient(BING) weighting
  • 相关文献

参考文献27

  • 1郭敬明,何昕,魏仲慧.基于在线支持向量机的Mean Shift彩色图像跟踪[J].液晶与显示,2014,29(1):120-128. 被引量:16
  • 2WU Y, LIM J, YANG M H. Online object track ing: A benchmark [C]. Proceedings of IEEE Con ference on Computer Vision and Pattern Recogni tion, OR, Portland: IEEE, 2013: 2411-2418.
  • 3ROSS D A, LIM J, LIN R S, et al.. Incremental learning for robust visual tracking [J]. Internation- al Journal of Computer Vision, 2008, 77 (1 3) : 125 141.
  • 4李静宇,王延杰.基于子空间的目标跟踪算法研究[J].液晶与显示,2014,29(4):617-622. 被引量:15
  • 5LI H, SHEN C, SHI Q. Real-time visual tracking using compressive sensing E C1. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, 2011: 1305- 1312.
  • 6SEVILI.A-LARA I., LEARN[D-MILLER E. Dis- tribution fields for tracking EC]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, 2012: 1910- 1917.
  • 7GRABNER H, GRABNER M, BISCHOF H. Real- time tracking via on-line boostingC]. Proceedings of British Machine Vision Conference, Edinburgh, Scotland: BMVA, 2006, 47-56.
  • 8GRABNER H, LEISTNER C, BISCHOF H. Semi- supervised on-line boosting for robust tracking[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany; Springer, 2008: 234- 247.
  • 9KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by struc- tural constraints [C]. Proceedings of IEEE Con- ference on Computer Vision and Pattern Recogni- tion, New York ,USA .. IEEE, 2010 49-56.
  • 10STALDER S, GRABNER H, VAN G L. Beyond semi-supervised tracking., tracking should he as simple as detection, but not simpler than recogni- tion C]. Proceedings of International Confer- ence on Computer Vision Workshop, Kyoto, Ja- t)an, 2009,1409-141 _.

二级参考文献84

  • 1Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Computing Surveys, 2006, 38(4) : 13(1-45).
  • 2Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[ C ]//Proceedings of Interna- tional Joint Conference on Artificial Intelligence. Menlo Park, California: AAAI Press, 1981 : 674-679.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25(5): 564-577.
  • 4Lepetit V, Lagger P, Fua P. Randomized trees for real-time key- point recognition[ C]//Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition. New York: IEEE Press, 2005 : 775-781.
  • 5Andriluka M, Roth S, Schiele B. People-tracking-by-detection and people-detection-by-tracking [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York : IEEE Press, 2008 : 1-8.
  • 6Viola P, Jones M. Rapid objec, t deteetion using a boosted cascade of simple features [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2001 : 5 ! 1-518.
  • 7Ozuysal M, Lepetit V, Fleuret F, eL . Feature harvesting for track- ing-by-detection [ C ]//Prtceedings of European Conference on Com- puter Vision. Berlin, Germany: Springer-Verlag, 2006: 592-605.
  • 8Collins R T, Liu Y, Leordeanu M. Online selection of discrimi- native tracking features[J]. IEEE Transactions on Pattern Ana- lysis anti Machine Intelligence, 2005, 27 (10) : 1631-1643.
  • 9Grabner H, Bischof H. On-line boosting and vision[ C]//Pro- ceedings nf IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 260-267.
  • 10Avidan S. Ensemble tracking[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (2) :261-271.

共引文献92

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部