期刊文献+

基于时频差的正交容积卡尔曼滤波跟踪算法 被引量:10

A tracking algorithm based on orthogonal cubature Kalman filter with TDOA and FDOA
在线阅读 下载PDF
导出
摘要 针对基于时频差测量的无源跟踪中面临的非线性估计问题,提出一种正交容积卡尔曼滤波跟踪算法.该算法在容积卡尔曼滤波算法的基础上,通过引入特定正交矩阵改进容积采样方法,在高维状态估计下减小因采样产生的误差,在没有增加计算量的前提下,有效提高收敛速度及跟踪精度.仿真结果表明,在基于到达时差和到达频差的联合无源跟踪问题中,与扩展卡尔曼滤波及容积卡尔曼滤波算法相比,本文所提算法在跟踪性能上有明显提升. In a passive target tracking system, the position and velocity of a target can be estimated based on time difference of arrival(TDOA) and frequency difference of arrival(FDOA) received by different stations. But TDOA and FDOA equations are nonlinear, which make the target tracking become a nonlinear estimation problem. To solve the nonlinear estimation problem, the most extensive research algorithms are those of extended Kalman filter(EKF), particle filter(PF), unscented Kalman filter(UKF), quadrature Kalman filter(QKF), and cubature Kalman filter(CKF). But the existing algorithms all come up with shortcoming in some way. EKF only retains the first order of the nonlinear function by Taylor series expansion, which will bring large error. PF has to face the degeneracy phenomenon and the problem of large computational complexity. The standard UKF is easy to become divergence in a high dimensional state estimation.QKF is sensitive to the dimension of state, and the calculation is of exponential growth with the growth of dimension.Although CKF can effectively improve the shortcomings, the discarded error is proportional to the state dimension,which may be large in high dimensional state. In view of the above problems, this paper presents an orthogonal cubature Kalman filter(OCKF) algorithm. This algorithm reduces the sampling error by introducing special orthogonal matrix to change the method of cubature sampling based on CKF. It eliminates the dimension impact on the sampling error. In the absence of additional computation, it effectively improves the tracking precision. Simulation results show that, based on the TDOA and FDOA, compared with the EKF and CKF algorithms, OCKF algorithm can improve the tracking performance significantly.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第15期17-24,共8页 Acta Physica Sinica
基金 国家高技术研究发展计划(批准号:2012AA01A502 2012AA01A505) 国家自然科学基金(批准号:61401513)资助的课题~~
关键词 目标跟踪 容积卡尔曼滤波 到达时差 到达频差 target tracking cubature Kalman filter time difference of arrival frequency difference of arrival
  • 相关文献

参考文献3

二级参考文献33

  • 1周亚强,曹延伟,冯道旺,皇甫堪.基于视在加速度与角速度信息的单站无源定位原理与目标跟踪算法研究[J].电子学报,2005,33(12):2120-2124. 被引量:16
  • 2张志良,孙棣华,张星霞.TDOA定位中到达时间及时间差误差的统计模型[J].重庆大学学报(自然科学版),2006,29(1):85-88. 被引量:12
  • 3陈礼斌,刘钊.一种新的自适应扩展卡尔曼滤波算法[J].激光与红外,2006,36(3):210-212. 被引量:9
  • 4齐海涛,沈建国,朱联祥,罗国栋.基于A-GPS/TDOA混合定位中的数据融合[J].重庆邮电大学学报(自然科学版),2007,19(B06):53-55. 被引量:6
  • 5ITO K, XIONG K. Gaussian filters for nonlinear filtering problems [J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927.
  • 6ARASARATNAM I, HAYKIN S, ELLIOTT R J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature [J]. Proceedings of the IEEE, 2007, 95(5): 953-977.
  • 7ARASARATNAM I, HAYKIN S. Square-root quad- rature Kalman filtering[J]. Proceedings of the IEEE, 2008, 56(6): 2589-2593.
  • 8VAN DER MERWE R, WAN E A. The square root unscented Kalman filter for state and parameter estimation [C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Piscataway, NJ, USA.. IEEE, 2001: 3461-3464.
  • 9Stoll E,Letschnik J,Walter U. On-orbit servicing[J].IEEE Robotics and Automation Magazine,2009,(04):29-33.
  • 10McLoughlin T H,Campbell M. Distributed estimate fusion filter for large spacecraft formations[R].Honolulu,HI,United States:American Institute of Aeronautics and Astronautics Inc,2008.

共引文献51

同被引文献67

  • 1胡高歌,刘逸涵,高社生,杨一.改进的强跟踪UKF算法及其在INS/GPS组合导航中的应用[J].中国惯性技术学报,2014,12(5):634-639. 被引量:27
  • 2刘梅,权太范,姚天宾,李海昊.多传感器多目标无源定位跟踪算法研究[J].电子学报,2006,34(6):991-995. 被引量:25
  • 3段凯宇,张力军.基于到达角Kalman滤波的TDOA/AOA定位算法[J].电子与信息学报,2006,28(9):1710-1713. 被引量:14
  • 4Compagnoni M, Notari R. TDOA--based localization in two dimensions: the bifurcation curve[J]. Fundarnenta Informaticae, 2014,135: 199-210.
  • 5Shao H J, Zhang X P, Wang Z. Efficient closed- form algorithms for AOA based self--localization of sensor nodes using auxiliary variables [J].IEEE Transactions on Signal Processing, 2014, 62(10) :2580-2594.
  • 6Lui K W K, So H C. Range-based source localication with pure reflector in presence of multipath propagation[J]. Electronics Letters, 2010,46(8) :957-958.
  • 7Liu D L. Joint TOA and DOA localization in indoor environment using virtual station [J]. IEEE Communications Letters, 2014, 18 (8) : 1423-1426.
  • 8Setlur P, Smith G E, Ahmad F, et al. Target localization with a single sensor via multipath exploitation [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48 (3) : 1996-2014.
  • 9Stansfield R. Statistical theory of d. f. fixing [J]. Journal of the Institution of Electrical Engineers -- Part IIIA: Radiocommunication, 1947,94 (15) : 762-770.
  • 10Pages-Zamora A, Vidal J, Brooks D H. Closed- form solution for positioning based on angle of arrival measurements[C]//the 13th IEEE Inter- national Symposium on Personal, Indoor and Mobile Radio Communications. Lisboa, Portuga, 2002 : 1522-1526.

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部