期刊文献+

回火工艺对AerMet340钢性能和微观组织的影响 被引量:5

Effects of tempering process on properties and microstructure of AerMet340 steel
原文传递
导出
摘要 采用力学性能测试、SEM、TEM、XRD等试验方法研究了回火温度和时间对二次硬化型超高强度钢Aer Met340的力学性能及微观组织的影响。结果表明,Aer Met340钢的回火曲线呈现明显的二次硬化现象,获得最佳综合性能的回火工艺为482℃×5 h空冷;抗拉强度、规定塑性延伸强度峰值分别为2460 MPa、2061 MPa,对应的回火温度分别为450、468℃;在低温回火时,Aer Met340钢主要由回火马氏体和ε-碳化物组成,高于468℃回火时,基体中弥散分布着细小针状M2C碳化物,这是该钢获得高强韧性的主要原因之一;随着回火温度的上升,合金碳化物M2C的主要合金成分Fe、Cr、Mo含量明显升高,使得M2C的晶格常数发生变化,并逐渐脱离了与基体的共格关系。 The effects of tempering temperature and time on the mechanical properties and microstructure of a secondary hardening ultra-high strength steel AerMet340 were investigated by means of mechanical test, SEM, TEM and XRD respectively. The results show that the tempering curve of AerMet340 steel presents secondary hardening phenomenon obviously, and the tempering process to obtain the best properties is tempered at 482 ℃ for 5 h and then air cooled. The peak values of tensile strength and yield strength are 2460 MPa and 2061 MPa, corresponding to the peak temperature respectively of 450 ℃ and 468 ℃. When tempered at lower temperatures, AerMet340 steel is mainly composed of tempered martensite and e-carbides. When tempered above 468 ℃, the wee acicular ME C carbides precipitate with distributing of dispersion in matrix, which is one of the main reasons for the high strength of the steel. Moreover, with tempering temperature rising, the contents of Fe, Cr and Mo, as the main components of MEC carbides, increase significantly, which makes the lattice constant of ME C change and the precipitates are divorced from a coherent relationship with the matrix gradually.
出处 《金属热处理》 CAS CSCD 北大核心 2015年第8期101-105,共5页 Heat Treatment of Metals
关键词 AER Met340钢 回火 力学性能 微观组织 析出相 AerMet340 steel tempering mechanical properties microstructure precipitates
  • 相关文献

参考文献13

二级参考文献29

  • 1许昌淦,张少锐.高韧性超高强度钢AF1410[J].特殊钢,1993,14(6):11-14. 被引量:11
  • 2许昌淦,唐群,张文杰.15Cr2Ni10MoCo14钢的淬火对时效组织和性能的影响[J].特殊钢,1994,15(1):20-22. 被引量:3
  • 3冶金工业部钢铁研究总院.合金钢手册[M].北京:冶金工业出版社,1988..
  • 4凌斌.[D].北京:北京航空材料研究院,1996.
  • 5Lee E U. Corrosion behavior of landing gear steels[R], AD-A285862.
  • 6Dahl J M, Novotny P M. Airframe and landing gear alloy[J]. Advanced Materials & processes, 1999,(3) : 23--25.
  • 7Manson S S. Aerospace structure metals handbook[M], vol.2, Ferous alloy AFC-77 [H]. 1974.
  • 8Chandahok V K, Dulis E J, Kasak A. Development of new and useful elevated-temperature steels for aircraft applications[R]. ASD- TR- 61 - 386.
  • 9Antolovich S D, Singh B. On the toughness increment associated with the Austenite to Martensite phasetransformation in TRIP steels[ J ].Metal Trans,1971,2(8): 2135-2141.
  • 10罗承萍,Metall Trans A,1992年,23卷,1403页

共引文献85

同被引文献31

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部