期刊文献+

逆威布尔部件的可靠性估计 被引量:1

Estimating Reliability of Inverse Weibull Component
在线阅读 下载PDF
导出
摘要 针对贝叶斯分析中平方误差损失存在的"高估和低估同等重要"问题,提出了一种基于熵损失函数的贝叶斯可靠性分析方法。利用该方法,分别在无信息先验和共轭先验分布下,推导出逆威布尔部件参数、可靠度函数及失效率的Bayes估计,并证明了形如[c T(x)+d]-1的一类估计具有容许性。为了比较不同估计结果的忧劣,文中还给出了逆威布尔部件参数的一致最小方差无偏估计(UMVUE)。最后运用Monte Carlo方法对各种估计的均方误差进行了模拟比较。结果表明,当样本量比较小时,Bayes估计的均方误差小于UMVUE的均方误差。随着样本量的增加,各个估计的均方误差都减小,但在共轭先验下Bayes估计的均方误差最小。 The mean square error loss in the Bayes estimation has the problem of " equal importance of overestimation and underestimation" . Hence we propose the Bayes reliability analysis method based on the entropy loss function. With this method, we derive respectively the parameters, reliability function and failure rate function of the inverse Weibull component under noninformative priori distribution and conjugate priori distribution. We also prove that the estimation of the class [cT(x)+ d]^ -1 has admissibility. In order to compare the advantages and disadvantages of different estimation results, we derive the uniform minimum variance unbiased estimate (UMVUE) of the parameters of the inverse Weibull component. Finally, we use the Monte Carlo method to carry out the calculation of the mean square errors of various estimations to analyze the influence of different sample sizes on the accuracy of different estimation results and to compare the effects of the Bayes estimation under noninformative priori distribution and conjunctional prior distribution respectively. The calculation results, given in Table 1, and their analysis show preliminarily that: (1) when the sample size is relatively small, the mean square error of the Bayes estimation is smaller than that of UMVUE; (2) the mean square error of each estimation decreases with increasing sample size; (3) under conjugate priori distribution, the Bayes estimation has minimum mean square error.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第4期694-698,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(71171164 71401134 70471057) 陕西省自然科学基础研究计划项目(2015JM1003) 陕西省教育厅科研计划项目(14JK1673)资助
关键词 逆威布尔部件 均方误差 一致最小方差无偏估计 容许性 BAYES 估计 熵损失函数 calculations, computer simulation, decision masking, entropy, errors, estimation, functions, inverse problems, mean square error, Monte Carlo methods, parameter estimation, reliability analysis, sampling, Weibull distribution admissibility, Bayes estimation, entropy loss function, inverse Weibullcomponent, uniform minimum variance unbiased estimate (UMVUE)
  • 相关文献

参考文献6

  • 1Khan M S, Pasha G R, Pasha A H. Theoretical Analysis of Inverse Weibull Distribution [ J ]. Wseas Trans on Mathematics, 2008, 7(2): 30-38.
  • 2Kundua D, Howlader H. Bayesian Inference and Prediction of the Inverse Weibull Distribution for Type-II Censored Data [ J ]. Computational Statistics and Data Analysis, 2010, 54(6) : 1547-1558.
  • 3张帆,师义民.基于屏蔽数据的航空电源系统可靠性分析[J].航天控制,2009,27(4):96-100. 被引量:8
  • 4Mahmouda M A W, Sultana K S, Amerb S M. Order Statistics From Inverse Weibull Distribution and Associated Inference [ J ] Computational Statistics & Data Analysis, 2003, 42:149-163.
  • 5苏韩,韦程东,韦师,邓立凤.平方损失下逆威布尔分布参数的Bayes估计[J].广西师范学院学报(自然科学版),2009,26(4):32-35. 被引量:6
  • 6Berger J O. Statistical Decision Theory and Bayesian Analysis[ M]. New York, Springer-Verlg, 1985.

二级参考文献18

  • 1张士峰,邓爱民.含有屏蔽寿命数据的贝叶斯可靠性分析[J].战术导弹技术,2001(3):34-39. 被引量:7
  • 2韩庆田,卢洪义,杨兴根.逆威布尔分布模型及其应用[J].质量与可靠性,2006(4):18-21. 被引量:10
  • 3Calabria R, Pulcini G. On the Maximum Likelihood and Least-squares Estimation in the Inverse Weibull Distribution [J].Statis, 1990, 2 ( 1 ) :53-63.
  • 4Calabria R, Pulcini G. Bayes 2-sample Prediction for the Inverse Weibull Distribution [ J ]. Commun. Statist. Theory Methods, 1994,23 (6) :1811-1824.
  • 5Jiang R, Zuo M J and Li H X. Weibull and Inverse Weibull Mixture Models Allowing Negative Weights[ J ]. Reliability Engineering and System Safety, 1999, 66 (3) :227-234.
  • 6Jiang R, Murthy D N P and Ji P. Models Involving Two Inverse Weibull Distributions [J]. Reliability Engineering and System Safety, 2001, 73 (1) :73-81.
  • 7Sarhan A M. Reliability Estimation of Components from Masked System Life Data[ J]. Reliability Engineering & System Safety, 2001 , 74( 1 ) : 107-113.
  • 8Usher John S and Hodgson T J. Maximum Likelihood Analysis of Component Reliability Using Masked System Life-test Data [ J]. IEEE Transactions on Reliability, 1988, 37(5): 550-555.
  • 9Sarhan A M. Estimation of System Components Reliabilities Using Masked Data [ J]. Applied Mathematics and Computation,2003, 136( 1 ) : 79-92.
  • 10Sarhan A M. Parameter Estimation in Linear Failure Rate Model Using Masked Data [ J ]. Applied Mathematics and Computation, 2004,151 ( 1 ) :233-249.

共引文献11

同被引文献15

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部