期刊文献+

一种基于Spark的论文相似性快速检测方法 被引量:2

An Approach for Scientific Paper Similarity Rapid Detection Based on Spark
原文传递
导出
摘要 [目的/意义]从大规模已知文本集中检测出与待检测论文的相似文本并计算相似度大小,用于满足在线论文相似性检测秒级响应需求。[方法/过程]采用分治法策略,对已知文本句集进行基于正交基的软聚类预处理,并对软聚类后的每个簇建立倒排索引。接着在快数据处理平台Spark上执行相似性检测,采用字符结合词组形式计算出待检测论文与已知文本的相似度大小。[结果/结论]通过200万规模的已知文本集实验结果显示,综合4种类型的待检测论文,所提出的倒排索引结合软聚类算法准确率P为100.0%,召回率R为93.6%,调和平均值F为96.7%。调和平均值F比相似性检测算法LCS高10%左右,比Simhash算法高约23%。在检测速度上,对于一篇字数为5 000左右的待检测论文,检测时间约为6.5秒,比Simhash算法快近300倍,比LCS算法快约4 000倍,此外,实验结果还表明基于Spark的分布式并行相似性检测算法具有较好的可扩展性。 [ Purpose/significance ] This paper detects the texts similar with papers to be detected from the large scale known texts and computes their similarities, to meet the second response requirement of online paper similarity de- tection. [ Method/process ] It uses divide and conquer strategy to softly cluster known text sentence set, and establishes inverted index for each cluster after soft clustering. Then it performs the similarity computing between papers to be detec- ted and known texts on the fast data processing platform - Spark, using the method of character combined with phrase. [ Result/conclusion ] Through the experiment of two million known texts set, the results show that the proposed inverted index algorithm combined with soft clustering has precision rate P 100.0% , recall rate R 93.6% and harmonic mean F value 96.7%, integrating four types of papers to be detected. The harmonic mean F is about t0% higher than LCS algo- rithm and 23 % higher than Simhash algorithm. In the detection of the paper with 5 000 words, the proposed algorithm has the detection time of about 6.5 seconds, nearly 300 times faster than the Simhash algorithm, and approximately 4 000 times faster than LCS algorithm. In addition, the results also show that the Spark based distributed parallel similarity de- tection algorithm has better scalability.
出处 《图书情报工作》 CSSCI 北大核心 2015年第11期134-142,共9页 Library and Information Service
基金 国家社会科学基金重大项目"面向突发事件应急决策的快速响应情报体系研究"(项目编号:13&ZD174) 国家社会科学基金项目"基于关联数据的图书馆语义云服务研究"(项目编号:12CTQ009) 江苏省社会科学项目青年项目"基于语义云服务的数字阅读推广研究"(项目编号:14TQC003) 中央高校基本科研业务费专项资金资助项目"基于用户的标语用分析的社会化标签知识组织研究"(项目编号:1435003) 江苏省高校自然科学研究面上资助项目"基于语义消歧技术的社会化标签知识组织研究"(项目编号:15KJB520013)研究成果之一
关键词 论文相似性检测 Spark快数据处理 正交基软聚类 倒排索引 paper similarity detection Spark fast data processing orthogonal soft clustering inverted index
  • 相关文献

参考文献25

  • 1Apache spark [ EB/OL ]. [ 2015 - 03 - 18]. http://spark, a-pache. org.
  • 2Si A, Leong H V,Lau R W H. Check: A document plagiarism de-tection system [ C ] //Proceedings of the 1997 ACM Symposium onApplied Computing. New York: ACM, 1997 : 70 -77.
  • 3Schleimer S, Wilkerson D S,Aiken A. Winnowing: Local algo-rithms for document fingerprinting [ C ] //Proceedings of the 2003ACM SIGMOD International Conference on Management of Data.New York:ACM, 2003: 76 -85.
  • 4秦新国.基于句子相似度的文档复制检测算法研究[J].现代图书情报技术,2007(11):63-66. 被引量:9
  • 5Roul R K,Mittal S,Joshi P. Efficient approach for near duplicatedocument detection using textual and conceptual based techniques[M ] // Advanced Computing, Networking and Informatics -Volume1. Springer International Publishing, 2014 : 195 -203.
  • 6黄承慧,印鉴,侯昉.一种结合词项语义信息和TF-IDF方法的文本相似度量方法[J].计算机学报,2011,34(5):856-864. 被引量:226
  • 7白如江,王晓笛,王效岳.基于数字指纹的文献相似度检测研究[J].图书情报工作,2013,57(15):88-95. 被引量:7
  • 8李纲,毛进,陈璟浩.基于语义指纹的中文文本快速去重[J].现代图书情报技术,2013(9):41-47. 被引量:5
  • 9Luo Xi, Najjar W, Hristidis V. Efficient near-duplicate documentdetection using FPGAs [ C ]//Big Data, 2013 IEEE InternationalConference on. Silicon Valley : IEEE, 2013 : 54-61.
  • 10Monostori K, Zaslavsky A, Schmidt H. Parallel and distributeddocument overlap detection on the Web [ M ] //Applied ParallelComputing. New Paradigms for HPC in Industry and Academia.London:Springer-Verlag London, 2001 : 206 -214.

二级参考文献148

  • 1王小华,卢小康.基于N-Gram的文本去重方法研究[J].杭州电子科技大学学报(自然科学版),2010,30(2):61-64. 被引量:5
  • 2史彦军,滕弘飞,金博.抄袭论文识别研究与进展[J].大连理工大学学报,2005,45(1):50-57. 被引量:36
  • 3金博,史彦军,滕弘飞.基于语义理解的文本相似度算法[J].大连理工大学学报,2005,45(2):291-297. 被引量:80
  • 4何明,胡彩霞.一种文本相似性的度量方法和计算方法[J].黄山学院学报,2005,7(6):71-72. 被引量:3
  • 5Fung B C M,Wang K,Ester M.Hierarchical document clustering//Wang John ed.The Encyclopedia of Data Warehousing and Mining,idea Group.2005:970-975.
  • 6Salton G.The SMART Retrieval System-Experiments in Automatic Document Processing.Englewood Cliffs,New Jersey:Prentice Hall Inc,1971.
  • 7Wang Y,Julia H.Document clustering with semantic analysis//Proceedings of the 39th Hawaii International Conferences on System Sciences.Hawaii,US,2006:54-63.
  • 8Hotho A,Staab S,Stumme G.Wordnet improves text document clustering//Proceedings of the Semantic Web Workshop at SIGIR-2003,26th Annual International ACM SIGIR Conference.Toronto,Canada,2003:541-550.
  • 9Hall P,Dowling G.Approximate string matching.Computing Survey,1980,12(4):381-402.
  • 10Coelho T,Calado P,Souza L,Ribeiro-Neto B,Muntz R.Image retrieval using multiple evidence ranking.IEEETransactions on Knowledge and Data Engineering,2004,16(4):408-417.

共引文献264

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部