期刊文献+

基于多特征级联的目标跟踪算法研究 被引量:4

Object tracking algorithm based on multiple features cascade
在线阅读 下载PDF
导出
摘要 为了增强目标跟踪的有效性,提出了一种以粒子滤波作为跟踪框架,基于多特征级联的目标跟踪算法。以log-Gabor滤波器作为粒子判别级,滤除一定数量的无效粒子以提高粒子滤波的性能;再级联融合了log-Gabor特征、局部二值模式(LBP)特征和方向梯度直方图(HOG)特征的粒子加权级,实现目标跟踪。应用log-Gabor滤波器良好的频率响应对粒子做出总体评估以决定其有效性,同时以log-Gabor滤波器输出张成的频域特征。配合LBP和HOG局部特征,处理目标总体信息和细节信息,利用混合高斯模型突出后验概率分布中的峰值状态。实验结果表明,该文算法能快速去除无效粒子,实现目标的鲁棒跟踪。 In order to improve the effectiveness of visual object tracking,an object tracking algorithm based on multiple features cascade is proposed with particle filters as a tracking frame. Invalid particles are removed by log-Gabor filters as a discrimination stage; particle tracking is realized by cascade particle weighting stage combing log-Gabor features,local binary pattern( LBP) features and histograms of oriented gradients( HOG) features. The particles are estimated totally by the frequency response of log-Gabor filters,so that their effectiveness is decided,and the frequency domain characters are outputted by the log-Gabor filters. The total information and detail information are handled by considering LBP and HOG local features. The peak valve of posterior probability distribution is pro-truded using Gaussian mixture model( GMM). Experimental results indicate that the proposed method can remove invalid particles efficiently and realize robust tracking effectively.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第3期286-292,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61373055)
关键词 多特征级联 目标跟踪算法 粒子滤波 LOG-GABOR滤波器 局部二值模式 方向梯度直方图 频率响应 混合高斯模型 后验概率分布 multiple features cascade object tracking algorithm particle filter log-Gabor filter local binary pattern oriented gradients histograms frequency response Gaussian mixture model posterior probability distribution
  • 相关文献

参考文献20

  • 1Smeulders A W,Chu D M,Cucchiara R A, et al. Visualtracking : An experimental survey [ J ]. IEEETransactions on Pattern Analysis and MachineIntelligence,2014,36(7) : 1442-1468.
  • 2Han Zhenjun, Ye Qixiang, Jiao Jianbin. Combinedfeature evaluation for adaptive visual object tracking[J]. Computer Vision and Image Understanding,2011,115(1) :69-80.
  • 3Chang I-cheng, Lin S Y. 3D human motion trackingbased on a progressive particle filter [ J ] ? PatternRecognition,2010,43( 10) :3621-3635.
  • 4胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:294
  • 5Arulampalam M S, Maskell S, Gordon N, et al. Atutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking [ J ]. IEEE Transactions onSignal Processing,2002,50(2) :174-188.
  • 6Shahed Nejhum S M,Ho J, Yang Ming-Hsuan,et al.Online visual tracking with histograms and articulatingblocks [ J ]. Computer Vision and ImageUnderstanding,2010,114(8) :901 -914.
  • 7Nummiaro K,Koller-Meier E,Van Gool L. An adaptivecolor-based particle filter [ J ]. Image and VisionComputing,2003,21 (1) :99-110.
  • 8张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 9Field D J. Relations between the statistics of naturalimages and the response properties of cortical cells[J]. Journal of the Optical Society of America. A,Optics and Image Science and Vision, 1987,4 ( 12):2379-2394.
  • 10Arr6spide J, Salgado L. Log-Gabor filters for image-based vehicle verification [ J ]. IEEE Transactions onImage Processing,2013,22(6) :2286-2295.

二级参考文献158

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:294
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4钟小品,薛建儒,郑南宁,平林江.基于融合策略自适应的多线索跟踪方法[J].电子与信息学报,2007,29(5):1017-1022. 被引量:21
  • 5Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 6Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 7Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 8Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 9Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
  • 10Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271

共引文献589

同被引文献31

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部