期刊文献+

下胫腓联合断裂对踝关节生物力学影响的研究 被引量:10

Impact of ruptured tibiofibular syndesmosis on biomechanics of the ankle joint
原文传递
导出
摘要 目的 探究踝关节下胫腓联合前韧带断裂和全部断裂对踝关节生物力学的影响. 方法 选用6具成年健康新鲜踝关节,建立3组模型:A组:踝关节内、外侧韧带及下胫腓联合完好作为正常组;B组:把A组下胫腓联合前韧带切断,作为下胫腓联合部分损伤组;C组:把B组标本下胫腓联合完全切断;作为下胫腓联合完全断裂组;把6具踝关节按A→C顺序分别入组并置入电子压力传感器,置于生物力学机上分别在背伸10°、内翻20°、外翻20°、跖屈20°、中立位5种状态下加载,记录和比较各组标本踝关节的峰值压力,以及峰值压力主要部位. 结果 在各种状态下应力A组<B组<C组,三组间两两比较差异均有统计学意义(P<0.05).B、C组在中立位、背伸10°位、跖屈20°位主要受力位置较A组有向外增大趋势,C组较B组更为明显. 结论 下胫腓联合前韧带断裂和下胫腓联合完全韧带断裂会增加踝关节应力,后者增加更为明显;而且两种情况下受力主要位置有向外增大趋势,后者增大更明显. Objective To explore the impact of partial or complete rupture of the tibiofibular syndesmosis on the biomechanical properties of the ankle joint.Methods Six fresh cadaveric specimens of adult ankle were used for creation of 3 models of tibiofibular syndesmosis.In model A,the medial and lateral ligaments of the ankle joint and the tibiofihular syndesmosis were intact.In model B,only the anterior lower tibiofibular ligament was broken.In model C,all inferior tibiofibular ligaments were broken.The 3 models were tested with an electronic pressure sensor in a BOSE material testing machine respectively at 5 positions:10° dorsal extension,20° inversion,20° eversion,20° plantar flexion,and neutral position.The peak values and locations of the compressive stresses of the 3 models at 5 positions were recorded.All the data were collected and analyzed using IBM SPSS 22.0 statistical software.Results Model A exhibited the smallest average stress at all the 5 positions,followed by model B and model C,with significant differences between groups (P 〈 0.05).The locations of main compressive stress at the neutral position,10° dorsal extension,and 20° plantar flexion in model B and model C tended to expand outwards compared with model A,especially in model C.Conclusions Rupture of the anterior lower tibiofibular ligament and inferior tibiofibular ligaments may increase the compressive stress on the ankle joint,especially rupture of the inferior tibiofibular ligaments.The location of main compressive stress tends to expand outwards when the anterior lower tibiofibular ligament and inferior tibiofihular ligaments are broken,especially the inferior tibiofibular ligaments.
出处 《中华创伤骨科杂志》 CAS CSCD 北大核心 2015年第6期532-535,共4页 Chinese Journal of Orthopaedic Trauma
关键词 踝关节 韧带 生物力学 下胫腓韧带 Ankle joint Ligaments Biomechanics Anterior lower tibiofibular ligament
  • 相关文献

参考文献14

  • 1Grass R, Herzmann K, Biewener A, et al. Injuries of the inferior tibiofibular syndesmosis [J] . Unfallchirurg, 2000, 103(7): 520-532.
  • 2Goldstein RY, Montero N, Jain SK, et al. Efficacy of popliteal block in postoperative pain control after ankle fracture fixation: a prospec- tive randomized study [J] . J Orthop Trauma, 2012, 26(10): 557-561.
  • 3刘清华,余斌,李忠,庄岩,张堃.下胫腓联合螺钉位置对踝关节应力分布影响的有限元分析[J].中华创伤骨科杂志,2013,15(9):778-783. 被引量:13
  • 4刘清华,余斌,张堃,庄岩,李忠,金丹.不同载荷对正常踝关节影响的有限元研究[J].中华创伤骨科杂志,2013,15(8):704-708. 被引量:11
  • 5齐向北,张英泽,潘进社,张奉琪,彭阿钦,崔慧先,王庆贤,宋朝辉.新鲜与防腐椎体标本生物力学差异性的试验研究[J].中国临床解剖学杂志,2005,23(2):202-205. 被引量:7
  • 6齐向北,张英泽,张奉琪,潘进社,彭阿钦,宋朝晖,崔慧先.新鲜与防腐标本椎体骨密度的相关研究[J].河北医药,2007,29(2):109-110. 被引量:1
  • 7Stauffer RN, Chao EY, Brewster RC. Force and motion analysis of the normal, diseased, and prosthetic ankle joint [J]. Clin Orthop Relat Res, 1977 (127): 189-196.
  • 8Weigel B, Nerlich M. Diagnosis and therapy of ligament injuries of the ankle joint [J]. Chirurg, 1998, 69(9): 994-1010.
  • 9Patwari P, Cheng DM, Cole AA, et al. Analysis of the relationship between peak stress and proteoglycan loss following injurious com- pression of human post-mortem knee and ankle cartilage [J]. Biomech Model Mechanobiol. 2007, 6(1-2): 83-89.
  • 10Mckinley TO, Mckinley T, Rudert M J, et al. Stance-phase aggregate contact stress and contact stress gradient changes resulting from ar- ticular surface stepoffs in human cadaveric ankles [J]. Osteoarthritis Cartilage, 2006, 14(2): 131-138.

二级参考文献61

共引文献49

同被引文献111

  • 1Ruedi TP, Allguwer M. The operative treatment of intra articular fracture of the lower end of the tibia[J]. Clin Orthop Relat Res, 1979 (138): 105-110.
  • 2Hansen ST. Functional reconstruction of the foot and ankle[M] . Philadelphia PA: Lippincott Williams & Wilkins, 2000: 37-46.
  • 3Kitaoka HB, Alecander IJ, Adelaar RS, er al. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes[J] . Foot Ankle Int, 1994, 15(7): 349-353. DOI: 10. 1177/1071100794015 00701.
  • 4Chen DW, Li B, Yang YF, et al. Posterior pilon fractures[J]. Foot Ankle Int, 2013, 34(5): 766-767. DOI: 10. 1177/10711007134840 08.
  • 5Bito C, Szilagyi Z. Treatment of "kissing surface" injury with mo- saicplasty[J] . Orv Hetil, 2009, 150(47): 2150-2153. DOI: 10. 1556/OH. 2009. 28711.
  • 6Topliss C J, Jackson M, Atkins RM. Anatomy of pilon fractures of the distal tibia[J]. J Bone Joint Surg Br, 2005, 87(5): 692-697. DOI: 10. 1302/0301-620X. 87B5. 15982.
  • 7Chen DW, Li B, Aubeeluck A, et al. Open reduction and internal fixation of posterior pilon fracture with buttress plate[J] . Acta Ortop Bras, 2014, 22(1): 48-53. DOI: 10. 1590/S1413-7852201400010 0009.
  • 8Gardner MJ, Boraiah S, Hentel KD, et al. The hyperplantarflexion ankle fracture variant[J] . J Foot Ankle Surg, 2007, 46(4): 256-260. DOI: 10. 1053/j. jfas. 2007.03. 013.
  • 9McCullough CJ, Burge PD. Rotatory stability of the load-bearing ankle. An experimental study[J] . J Bone Joint Surg Br, 1980, 62(4): 460-464.
  • 10Ferran NA, Oliva F, Maffulli N. Ankle instability[J] . Sports Med Arthrosc, 2009, 17(2): 139-145. DOI: 10. 1097/JSA. 0b013e3181a 3d790.

引证文献10

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部