摘要
Divalent IIA metals such as Be, Mg, Ca, Sr, Ba and transition IIB metals such as Zn, Cd were investigated as possible n-type dopants into the Cu2 O theoretically by using the first-principles calculations based on density functional theory. By systematical analyses of the lattice parameters, the bond length, the electronic structure, the local density of states and the defect formation energy for various doping systems, it is revealed that Ca, Sr, Ba and Be are more suited for n-type doping into Cu2O as shallow donors, compared to Mg which introduces a relatively deep donor level in Cu2O. Meanwhile, Zn and Cd can hardly be doped into Cu2O due to the positive formation energy of relevant defects.
Divalent IIA metals such as Be, Mg, Ca, Sr, Ba and transition IIB metals such as Zn, Cd were investigated as possible n-type dopants into the Cu2 O theoretically by using the first-principles calculations based on density functional theory. By systematical analyses of the lattice parameters, the bond length, the electronic structure, the local density of states and the defect formation energy for various doping systems, it is revealed that Ca, Sr, Ba and Be are more suited for n-type doping into Cu2O as shallow donors, compared to Mg which introduces a relatively deep donor level in Cu2O. Meanwhile, Zn and Cd can hardly be doped into Cu2O due to the positive formation energy of relevant defects.
基金
Funded by the National Natural Science Foundation of China(Nos.50972041,61274010)
Program for New Century Excellent Talents in University,Ministry of Education of China(No.NCET-09-0135)
Research Fund for the Doctoral Program of Higher Education of China(Nos.20124208110005,20124208120006)
the Natural Science Foundation of Hubei Province(No.2011CDA81)
Science Foundation of Hubei Provincial Department of Education(No.D20131001)