期刊文献+

基于SURF特征贡献度矩阵的图像ROI选取与检索方法 被引量:8

ROI Selection and Image Retrieval Method Based on Contribution Matrix of SURF Features
在线阅读 下载PDF
导出
摘要 传统的基于全局特征的图像检索方法中需要对整幅图像特征提取,计算复杂度大,且容易导致语义歧义.针对这一问题,提出一种基于SURF特征贡献度矩阵的ROI选取和图像检索方法.首先采用SURF算子提取图像局部特征,然后依据特征点的Hessian矩阵计算其贡献度矩阵,并将其应用到ROI检测中;在此基础上,融合并归一化ROI的颜色、纹理以及形状等底层特征,利用非线性高斯距离函数进行相似度匹配,实现图像检索.实验结果表明,与已有算法相比,该算法提取的ROI与人类视觉意图一致性高,检索效果较好. In traditional image retrieval method, features need to be extracted within the whole region of image, which leads to high computation and semantic ambiguity. To address this issue, this paper proposes a technique to select region of interests(ROI), and carries out the retrieve process within the ROI. Firstly, SURF feature descriptor is used to extract local features and keypoints. Then, dynamic program is employed to calculate the sum of sub-matrix of feature points distribution, which is finally utilized to extract the ROI. Finally, we integrate the color, texture and shape features into a fused feature within ROI, and use nonlinear Gaussian distance function to retrieve images from the database with user input. Experimental results show that our proposed method has high conformity with human vision, and is effective for image retrieval.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第7期1271-1277,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61202283 61472115) 合肥工业大学春华计划(2013HGCH0019)资助支持
关键词 图像检索 SURF算法 ROI选取 image retrieval SURF feature ROI
  • 相关文献

参考文献17

  • 1Kato T. Database architecture for content-based image retrieval [C]// Proceedings of SPIE. Bellingham: Society of Photo-Op- tical Instrumentation Engineers Press, 1992, 1622:112-123.
  • 2Lin C H, Chen R T, Chan Y K. A smart content-based image retrieval system based on color and texture feature [J]. Image and Vision Computing, 2009, 27(6): 658-665.
  • 3Ciocca C Cusano C, Santini S, et al. Halfway through the se- mantic gap: prosemantic features for image retrieval [J]. Infor- mation Sciences, 2011, 181(22): 4943-4958.
  • 4Vu K, Hua K A, Tavanapong W. Image retrieval based on re- gions of interest [J]. IEEE Transactions on Knowledge and Da- ta Engineering, 2003, 15(4): 1045-1049.
  • 5Chart Y K, Ho Y A, Liu Y T, et al. A ROI image retrieval me- thod based on CVAAO [J]. Image and Vision Computing, 2008, 26(11): 1540-1549.
  • 6Tian Q, Wu Y, Huang T S. Combine user defined re- gion-of-interest and spatial layout for image retrieval [C]// Proceedings of International Conference on Image Processing. Los Alamitos: IEEE Computer Society Press, 2000, 3:746-749.
  • 7Moghaddam B, Biermann H, Margaritis D. Regions-of-interest and spatial layout for content-based image retrieval [J]. Multi- media Tools and Applications, 2001, 14(2): 201-210.
  • 8Prasad B G, Biswas K K, Gupta S K. Region-based image re- trieval using integrated color, shape, and location index [J]. Computer Vision and Image Understanding, 2004, 94(1-3): 193-233.
  • 9施智平,李清勇,赵晓东,何清,史忠植.基于内容图像检索中的优化鉴别特征[J].计算机辅助设计与图形学学报,2012,24(12):1592-1598. 被引量:11
  • 10Itti L, Koch C, Niebur E. A model of saliency-based visual at- tention for rapid scene analysis [J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.

二级参考文献26

  • 1施智平,胡宏,李清勇,史忠植,段禅伦.一种快速有效的图像纹理谱描述子[J].计算机辅助设计与图形学学报,2004,16(12):1703-1707. 被引量:13
  • 2Lew M S, Sebe N, Dieraba C, et al. Content-basedmultimedia information retrieval: state of the art andchallenges [J], ACM Transactions on MultimediaComputing, Communications,and Applications. 2006,2(1):1-19.
  • 3Shi Z P,He Q,Shi Z Z. An index and retrieval frameworkintegrating perceptive features and semantics for multimediadatabases [J]. Multimedia Tools and Applications, 2009,42(2): 207-231.
  • 4Fisher R A. The statistical utilization of multiplemeasurements [J]. Annals of Eugenics? 1938, 8(4) : 376-386.
  • 5Turk M, Pentland A. Eigenfaces for recognition [J]. Journalof Cognitive Neuroscience, 1991,3(1): 71-86.
  • 6Belhumeur P N,Hespanha J P,Kriegman D J. Eigenfacesvs. fisherfaces: recognition using class specific linearprojection [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,1997,19(7): 711-720.
  • 7Lu J W, Plataniotis K N, Venetsanopoulos A N. Facerecognition using LDA-based algorithms [J]. IEEETransactions on Neural Networks, 2003,14(1) ; 195-200.
  • 8Ekenel H K, Stiefelhagen R. Two-class linear discriminantanalysis for face recognition [C] //Proceedings of the 15thSignal Processing and Communications Applications. LosAlamitos: IEEE Computer Society Press, 2007 : 1-4.
  • 9Fukunaga K. Introduction to statistical pattern recognition[M]. San Diego: Academic Press,1990.
  • 10Yu H,Yang J. A direct LDA algorithm for high-dimensionaldata-with application to face recognition [J]. PatternRecognition? 2001,34(10) : 2067-2070.

共引文献22

同被引文献83

引证文献8

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部