期刊文献+

CuO-ZnO/Al_2O_3双功能催化剂上纤维素催化液化:焙烧温度的影响 被引量:3

Catalytic liquefaction of cellulose over CuO-ZnO/Al_2O_3 bi-functional catalyst: Effect of calcination temperature
在线阅读 下载PDF
导出
摘要 采用共沉淀法制备了一系列不同焙烧温度用于超临界甲醇中催化液化纤维素的CuO-ZnO/Al2O3催化剂。运用XRD、TG/DTG、BET和H2-TPR等手段对催化剂进行表征与分析,考察了焙烧温度对CuO-ZnO/Al2O3催化剂结构及催化性能的影响。结果表明,500℃焙烧下的催化剂,热分解较为完全,CuO、ZnO和Zn Al2O4之间相互作用良好且结构稳定,反应活性较高。当焙烧温度<500℃,催化剂结晶效果差,稳定性差,导致催化剂活性低;当焙烧温度>500℃时,CuO因为高温发生团聚,生成的大量尖晶石Zn Al2O4使催化剂组分相互作用削弱。在300℃、60 mg微晶纤维素,60 mg催化剂,3 m L甲醇反应60 min条件下进行液化试验及重复性研究,500℃焙烧催化剂表现出良好的活性和稳定性。 A series of CuO-ZnO/Al2O3 catalysts were prepared using catalyst liquefaction of cellulose in supercritical methanol which was synthesized by the co-precipitation method at various calcination temperatures. The effect of the different calcination temperature on catalyst structure and performance was investigated by using XRD,TG/DTG,BET,H2-TPR. The results showed that CuO-ZnO/Al2O3 catalysts was almost completely decomposed at 500 ℃. It has a good stability,activity because of the excellent proper force between CuO,ZnO and Zn Al2O4. Poor crystallization and stability were the reasons which lead to the decrease of the catalyst activity when the calcination temperature is less than 500 ℃. Higher calcination temperature( 500 ℃) resulted in the agglomeration of CuO,generated a large number of Zn Al2O4 make catalyst component interaction. The catalyst calcined at 500 ℃ showed good activity and stability for the repeatability test at the conditions of 300 ℃,cellulose 60 mg,60 mg catalyst,3 m L methanol and holding time 60 min.
出处 《应用化工》 CAS CSCD 北大核心 2015年第6期1012-1015,1020,共5页 Applied Chemical Industry
基金 国家自然科学基金(51266003)
关键词 CuO-ZnO/Al2O3 焙烧温度 超临界甲醇 纤维素 催化液化 CuO-ZnO/Al2O3 calcination temperature methanol cellulose catalytic liquefaction
  • 相关文献

参考文献16

二级参考文献133

共引文献85

同被引文献31

  • 1唐军利.超细氧化钼的制备和研究[J].中国钼业,2004,28(6):32-35. 被引量:6
  • 2张伟德,李基涛,傅锦坤,陈兆远,古萍英,万惠霖.丙烷在Ni-Mg-Mo-O催化剂上的氧化脱氢[J].天然气化工—C1化学与化工,2000,25(4):1-4. 被引量:13
  • 3郭贵全,魏文,王红娟,谌凡更.蔗渣液化中铁系催化剂作用的研究[J].林产化学与工业,2005,25(3):47-50. 被引量:5
  • 4Ma Zhanhua, Jun Wanga, Li Jun, et al. Propane dehydrogenation over A1203 supported Pt nanoparticles:Effect of cerium addition [J]. Fuel Processing Technology,2014 ( 128 ) :283 - 288.
  • 5Cavani F, Ballarini N, Cerlcola A. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation [J]. Catalysis Today,2007,127(1/4) :113 - 131.
  • 6Chen K,Xie S,Iglesia E,et al. Structure and properties of zirconia- supported molybdenum oxide catalysts for oxidative dehydrogenation of propane [J]. Journal of Catalysis ,2000,189 ( 2 ) :421 - 430.
  • 7Koca S N, Gurdag G, Geissler S,et al. The oxidative dehydrogena- tion of propane over potassium - promoted molybdenum oxide/sol - gel zirconia catalysts [J]. Journal of Molecular Catalysis A : Chemical,2005,225 ( 2 ) : 197 - 202.
  • 8Tsilomelekis G, Christodoulakis A, Boghosian S. Support effects on structure and activity of molybdenum oxide catalysis for the oxida- tive dehydrogenation of ethane [J]. Catalysis Today, 2007, 127 (1) :139 -147.
  • 9Hu Hangchun,Israel E W. Catalytic properties of supported molybde- num oxide catalysts:In situ raman and methanol oxidation studies [J]. Journal of Physical Chemistry,1995,99(27) :10911 - 10922.
  • 10Christodoulakis A, Heracleous E, Lemonidou A A, et al. An op- erand raman study of structure and reactivity of alumina - sup- ported molybdenum oxide catalysts for the oxidative dehydrogen- ation of ethane [J]. Journal of Catalysis ,2006,242 ( 1 ) : 16 - 25.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部