期刊文献+

冲击载荷下CMDB推进剂断裂性能实验研究 被引量:6

Experimental research on CMDB propellant fracture under impact load
在线阅读 下载PDF
导出
摘要 高过载冲击载荷下,固体推进剂出现断裂行为是影响箭弹发动机装药结构完整性的重要原因之一。采用霍普金森实验技术(SHPB),对CMDB推进剂进行了冲击断裂实验。运用实验-仿真的方法,将实验数据直接输入仿真模型中,验证了实验条件下试件满足动态平衡前提假设,获得了推进剂的I型动态起裂韧性;利用扫描电镜设备(SEM),对推进剂断面形貌进行了观察和讨论。结果表明,CMDB推进剂动态起裂韧性在60 000-100 000 MPa·m^1/2/s加载率范围内表现出明显的线性率敏感特性,并在加载率达到100 000 MPa·m^1/2/s后出现极值3.96 MPa·m^1/2;CMDB推进剂在高过载条件下表现出明显的脆性起裂特性以及动态起裂韧性存在率敏感性,直接与应力波对基体和AP颗粒损伤程度相关。 Fracture occuring in solid propellant under high impact load is one of the main ways leading to the failure of the rocket motor structural integrity.In this paper, the impact fracture experiments of CMDB propellant were performed with the SHPB technology. The experimental data was directly imported into the simulation model to verify whether the specimen is under the dy-namic balance condition, which is the method of simulation-experiment,and the mode I dynamic initiation fracture toughness was obtained. The fracture surface morphology of specimens were examined by scanning electron microscope (SEM).The experiment results indicate that the CMDB propellant is a significant loading-rate-dependent material between 60 000 and 100 000 MPa·m^1/2/s, and the dynamic fracture initiation toughness threshold value ( 3. 96 MPa·m^1/2 ) occuring after the loading rate reaches up to 100 000 MPa·m^1/2/s.The CMDB propellant shows brittle fracture and loading-rate-dependent characteristic under dynamic loads are directly related to the degree of damage of matrix and AP particles impaired by stress wave.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2015年第3期372-377,395,共7页 Journal of Solid Rocket Technology
基金 总装重点预研项目(20101019)
关键词 固体推进剂 高过载冲击 动态起裂韧性 率敏感性 solid propellant high impact load dynamic initiation fracture toughness rate sensitivity
  • 相关文献

参考文献15

  • 1韩波,鞠玉涛,周长省.HTPB推进剂粘聚断裂研究[J].固体火箭技术,2013,36(1):89-93. 被引量:8
  • 2蒙上阳,胡光宇,刘兵,彭威.固体火箭发动机药柱裂纹的J积分分析[J].固体火箭技术,2010,33(6):646-649. 被引量:8
  • 3黄风雷,王泽平,丁敬.复合固体推进剂动态断裂研究[J].兵工学报,1995,16(2):47-50. 被引量:13
  • 4Abdelaziz M N, Neviere R,Pluvinage G.Experimental method for JIC computation on fracture of solid propellants under dy- namic loading conditions [ J ]. Engineering Fracture Mechan- ics, 1987,28 (4) :425-434.
  • 5Abdelaziz M N,Neviere R,Pluvinage G.Experimental investi- gation of fracture surface energy of a solid propellant under different loading rates [ J ]. Engineering Fracture Mechanics, 1988,31 (6) : 1009-1026.
  • 6Wang Q Z, Feng F, Ni M, et al. Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar [ J ]. Engineering Fracture Mechanics, 2011,78 (12) :2455-2469.
  • 7Hartley R S,Cloete T J,Nurick G N.An experimental assess- ment of friction effects in the split Hopkinson pressure bar u- sing the ring compression test[ J ] .International Journal of Im- pact Engineering,2007,34(I0) : 1705-1728.
  • 8李为民,许金余.大直径分离式霍普金森压杆试验中的波形整形技术研究[J].兵工学报,2009,30(3):350-355. 被引量:63
  • 9Zhang Q B, Zhao J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [ J ]. International Journal of Rock Mechanics and Mining Sciences,2013,60:423-439.
  • 10Zhou Y X, Xia K, Li X B, et al.Suggested methods for deter- mining the dynamic strength parameters and mode-I fracture toughness of rock materials [ J ]. International Journal of Rock Mechanics and Mining Sciences, 2012,49:105-112.

二级参考文献25

共引文献87

同被引文献102

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部