期刊文献+

一种基于MOD字典学习的图像超分辨率重建新算法

A New Algorithm of Image Super-Resolution Reconstruction Based on MOD Dictionary-Learning
在线阅读 下载PDF
导出
摘要 将低分辨率图像重建成高分辨率图像是图像处理领域中的一个重要课题。Yang提出一种基于联合字典学习的图像超分辨率重建算法,其算法样本选取与字典训练方法较为复杂。提出一种基于MOD字典学习的图像超分辨率重建新算法,首先采用少量的训练样本代替Yang的大量训练样本,然后使用MOD字典学习算法代替Yang的FFS字典学习算法,最后利用字典对图像进行稀疏表示与重建。实验结果表明,所提出的算法速度较快,并且重建图像的质量较高。 It is an important topic to reconstruct a high resolution image from a low resolution image. Yang proposed an image super-resolution reconstruction algorithm based on the joint dictionary-learning, which needs large samples, and dictionary training methods are complicated. In this paper, a new algorithm of image super-resolution reconstruction based on MOD dictionary-learning is proposed, a small amount of training samples is firstly used to replace large numbers of training samples of Yang's, then the MOD dictionary-learning algorithm is used instead of Yang's FFS dictionary-learning algorithm, at last, the resulted dictionary is applied to the image sparse representation and super-resolution reconstruction. The experimental results show that the image reconstruction speed is improved greatly with better reconstruction quality.
出处 《图学学报》 CSCD 北大核心 2015年第3期402-406,共5页 Journal of Graphics
基金 国家自然科学基金资助项目(61170327) 国家科技重大专项支持资助项目(2014ZX02502)
关键词 图像处理 图像重建 联合字典 超分辨率重建 MOD image processing image reconstruction joint dictionary super-resolution reconstruction MOD
  • 相关文献

参考文献16

  • 1Nguyen N, Milanfar E A wavelet-based interpolation- restoration method for super-resolution [J]. Circuits Systems and Signal Processing, 2000, 19(4): 321-338.
  • 2蔡念,张海员,张楠,潘晴.基于小波的改进加权抛物线插值的图像超分辨率算法[J].图学学报,2012,33(1):50-55. 被引量:3
  • 3lrani M, Peleg S. Improving resolution by image registration [J]. CVGIP: Graphical Models and Image Processing, 1991, 53(3): 231-239.
  • 4Nhat N, Milanfar P, Golub G. A computationally efficient super resolution image reconstruction algorithm [J]. IEEE Transactions on Image Processing, 2001, 10(4): 573-583.
  • 5Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high- resolution image estimation using a sequence of under-sampled images [J]. IEEETransactions on Image Processing, 1997, 6(12): 1621-1633.
  • 6Yang C, Huang J, Yang M. Exploiting self-similarities for single frame super-resolution [C]//Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011: 497-510.
  • 7Dong Weisheng, Zhang Lei, Shi Huangming, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization [J]. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857.
  • 8Yang Jianchao, Wright J, Huang T S, et al. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing, 2010, 19( 11): 2861-2873.
  • 9Engan K, Aase S O, Husoy J H. Method of optimal directions for frame design [C]//Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing, Phoenix, AZ, USA, 1999: 2443-2446.
  • 10Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms [J]. Advances in Neural Information Processing Systems, 2007, 19: 801.

二级参考文献3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部