期刊文献+

光子时间拉伸模数转换系统的多通道化设计与实现 被引量:11

Design and Implementation of Multi-Channel Photonic Time-Stretch Analog-to-Digital Converter
原文传递
导出
摘要 光子时间拉伸模数转换(PTS-ADC)技术利用光纤中的色散效应对被采样信号进行时间拉伸和带宽压缩,可大幅提高传统模数转换器(ADC)的采样率和模拟带宽。但PTS-ADC也存在采样时间窗口有限的缺点,难以满足连续信号的采样。采用多通道结构化设计是实现PTS-ADC连续采样模式的有效办法,但也存在通道间的失配误差。本文优化了多通道结构设计方案,可用于产生连续光载波和实现连续模式采样的PTS-ADC系统,并对该方案中多通道之间的偏置误差、增益误差和时间倾斜对系统的影响进行了理论分析和数值仿真。搭建了三通道实验系统平台,验证了该方案的可行性,系统采样率超过200 GSa/s、模拟带宽可达到45 GHz、有效比特位达到3.7。 Photonic time-stretch analog-to-digital converter (PTS-ADC) system utilizes the dispersion effect of fibers to stretch the sampled analog signal in time domain and compress its bandwidth in frequency domain, which can highly improve the sampling rate and bandwidth of the traditional analog-to-digital converter (ADC). Due to the time-aperture limitation, the traditional PTS-ADC is difficult to satisfy the continuous-time signal sampling. Multi-channel architecture is adopted to achieve a PTS-ADC operating in the continuous-time mode. However, this architecture introduces the inter-channel mismatch. A multi-channel architecture is optimized so as to achieve a continuous-time PTS-ADC system with improved accuracy. The effects of inter-channel offset, gain and time mismatches are studied by numerical simulation. A three-channel experimental system with the sampling rate of more than 200 GSa/s, bandwidth of 45 GHz, and effective number of bits (ENOB) of -3.7 is domonstrated.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第5期146-153,共8页 Chinese Journal of Lasers
基金 国家自然科学基金(61127016 61007052) 科技部国际合作项目(2011DFA11780) 教育部回国基金项目
关键词 光通信 模数转换器 时间拉伸 多通道化 色散 数据重构 optical communications analog-to-digital converter time-stretch multi-channel dispersion data reconstruction
  • 相关文献

参考文献22

  • 1George C Valley. Photonic analog-to-digital converters[J]. Optics Express, 2007, 15(5): 1955-1982.
  • 2尼启良.极紫外微通道板光子计数成像探测器性能研究[J].光学学报,2013,33(11):20-24. 被引量:13
  • 3A O J Wiberg, Z Tong, L Liu, et al.. Demonstration of 40 GHz analog-to-digital conversion using copy-and-sample-all parametric processing[C]. OFC, 2012: OW3C.2.
  • 4A Khilo, S J Spector, M E Grein, et al.. Photonic ADC: overcoming the bottleneck of electronic jitter[J]. Opt Express, 2012, 20(4): 4454-4469.
  • 5谭中伟,秦凤杰,任文华,刘艳.光纤色散在光信息处理中的应用[J].激光与光电子学进展,2013,50(8):207-216. 被引量:10
  • 6韩顺利,胡为良,张鹏.全光模数转换的原理及进展[J].激光与光电子学进展,2013,50(8):224-228. 被引量:6
  • 7黄民双,龙腾宇,刘慧慧,张泽.基于正弦曲线的高精度脉冲激光测距时间间隔测量技术[J].中国激光,2014,41(8):194-199. 被引量:19
  • 8F Coppinger, A S Bhushan, B Jalali. Photonic time stretch and its application to analog-to-digital conversion[J]. IEEE Transactions on Microwave Theory and Technique, 1999, 47(4): 1309-1314.
  • 9Yah Han, Bahrain Jalali. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations [J]. Journal of Lightwave Technology, 2003, 21 (12): 3085-3103.
  • 10Jason Chou, Ozdal Boyraz, Daniel Solli, et al.. Femtosecond real-time single-shot digitizer[J]. Applied Physics Letters, 2007, 91 (16): 161105.

二级参考文献52

  • 1谭中伟,宁提纲,刘艳,陈勇,曹继红,董小伟,马丽娜,简水生.基于啁啾光纤光栅的色散管理[J].物理学报,2006,55(6):2799-2803. 被引量:9
  • 2O H W Siegmund, M Lampton, S Chakrabarti, et al.. Application of wedge and stripe image readout systems to detectors for astronomy [C]. SHE, 1986, 627 660--665.
  • 3S Diebold, J Barnstedt, H-R Elsener, et al.. MCP detector development forWSO-UV[C]. SPIE, 2012, 8443 84432X.
  • 4B R Sandel, A L Broadfoot, C C Crtis, et al.. The extreme ultraviolet imager investigation for the image mission [J]. Space Sci Rev, 2000, 91(1-2) 197--242.
  • 5M Pfeifer, J Barnstedt, C Bauer, al.. Low-power readout electronics for microchannel plate detectors with cross strip anodes [C]. SHE, 2012, 8443: 844320.
  • 6G W Fraser, J F Pearson, J E Lees. Dark noise in microchannel plate X-ray detectors [J]. Nucl Instrum Meth A, 1987, 254(2): 447--462.
  • 7David J Sahnow. Long term gain variation in the FUSE detectors [C]. SPIE, 2004, 5488: 731--737.
  • 8O H W Siegmund. Preconditioning of microchannel plate stacks [C]. SHE, 1989, 1072: 111--118.
  • 9J A Wepman. Analog-to-digital converters and their applicatJons in radio receivers [J]. Commun Magazine, 1995, 33: 39-45.
  • 10R H Walden. Analog-to-digital conversion in the early 21st century [J]. IEEE MTT Workshop (WMK) on Uitrafast Analog-to-Digital ( A/D ) Conversion Techniques and Its Application, 2007, 5.

共引文献48

同被引文献65

  • 1李师波,赵建中,吴文.3mm线性调频源线性度实时数字校正技术研究[J].南京理工大学学报,2005,29(2):166-168. 被引量:6
  • 2Walden R H. Performance trends for analog to digital converters [J] . Communications Magazine IEEE, 1999, 37(2) : 96- 101.
  • 3Khilo A, Spector S J, Grein M E, et al: Photonic ADC: Overcoming the bottleneck of electronic jitter [J]. Optics Express, 2012, 20(4): 4454-4469.
  • 4Valley G C. Photonic analog-to-digital converters[J]. Optics Express, 2007, 15(5):1955-1982.
  • 5Wu G, Li S, Li X, et al: 18 wavelengths 83.9 GS/s optical sampling clock for photonie A/D converters[J]. Optics Express, 2010, 18(20): 21162-21168.
  • 6Gao H, Chen M, Chen H, et al: Time and wavelength interleaved pulse trains generation based on pure phase processing of optical spectral comb[J]. Optics Communications, 2014, 312(4) : 275-279.
  • 7Valley G C, Hurrell J P, Sefler G A. Photonie analog-to-digital converters: Fundamental and practical limits[C]. SPIE, 2004. 5618: 584164.
  • 8Twichell J C, Helkey R. Phase-encoded optical sampling for analog-to-digital converters [J]. Photonics Technology Letters IEEE, 2000, 12(9): 1237-1239.
  • 9Williamson R C, Younger R D, Juodawlkis P W, et al: Precision calibration of an optically sampled analog-to-digital converter[C]. Holey Fibers and Photonic Crystals/Polarization Mode Dispersion/Photonics Time/Frequency Measurement and Control, 2003 Digest of the LEOS Summer Topical Meetings IEEE, 2003 : MC4.2/22-MC4.2/23.
  • 10Widrow B, Glover J R, McCool J M, et al: Adaptive noise cancelling: Principles and applications[J]. Proceedings of the IEEE, 1975, 63(12): 1692-1716.

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部