期刊文献+

一种小型无人机无源目标定位方法及精度分析 被引量:32

Small UAV passive target localization approach and accuracy analysis
在线阅读 下载PDF
导出
摘要 为了提高小型无人机无源目标定位的精度,设计了一种新的目标定位算法。首先确定目标定位过程中的坐标转换关系并推导出视轴角的计算模型;然后,利用光电侦察平台锁定跟踪目标的特性,提出了对同一目标点多次测量的目标定位框架,建立了系统状态方程和测量方程,考虑到测量方程的非线性,将无迹卡尔曼滤波应用于目标位置估计;最后,针对加性高斯白噪声的非线性目标定位系统,推导出理论上的定位误差的克拉美-罗下限。仿真结果表明,该算法具有较高的目标定位精度,滤波器估计误差均方差已逼近非线性系统的克拉美-罗下限。现场试验结果表明,在离地面约1000 m的空中,无人机对地面目标定位精度可达8.1 m。该算法易于部署,可操作性强,具有较大的实用价值。 In order to improve the passive target localization accuracy for small unmanned aerial vehicle( UAV),a novel target localization algorithm is proposed. Firstly,the coordinate transformation relation in target localization process is established and the calculation model of camera line-of-sight angle is derived. Then according to the characteristic of locking tracking target of photoelectric detection platform,the target localization framework for measuring the same target repeatedly is proposed; the system state equation and measurement equation are established. Due to the nonlinearity of the measurement equation,unscented Kalman filter( UKF) is applied in the target position estimation. Finally,aiming at the nonlinear target localization system with overlapped zeromean Gaussian white noise,the Cramer-Rao low bound( CRLB) of theoretical localization error is derived. The simulation results show that this algorithm has high target localization accuracy,and the root mean square error( RMSE) of the filter estimation error has been approaching to the CRLB of the nonlinear system. Field experiment results show that the localization accuracy for a ground target can reach 8. 1 m when the UAV flies at about 1000 m above ground. The algorithm is easy to deploy,has strong operability and great practical value.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第5期1115-1122,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61401200)项目资助
关键词 小型无人机 无源目标定位 无迹卡尔曼滤波 克拉美-罗下限 small unmanned aerial vehicle(UAV) passive target localization unscented Kalman filter(UKF) Cramer-Rao low bound(CRLB)
  • 相关文献

参考文献15

  • 1CHEN J Y. UAV-guided navigation for ground robot tele- operation in a military reconnaissance environment[ J]. Ergonomics, 2010, 53 (8) : 940-950.
  • 2TISDALE J, RYAN A, KIM Z, et al. A multiple UAV system for vision-based search and localization [ C ]. American Control Conference, IEEE, 2008: 1985-1990.
  • 3徐诚,黄大庆.无人机光电侦测平台目标定位误差分析[J].仪器仪表学报,2013,34(10):2265-2270. 被引量:38
  • 4张琬琳,胡正良,朱建军,林小娟,尹剑,杨萌.单兵综合观瞄仪中的一种目标位置解算方法[J].电子测量技术,2014,37(11):1-3. 被引量:5
  • 5淡金强,马国华,蒋胜平,韩鲁滨.基于DEM的战场目标侦察定位技术研究[J].光学技术,2008,34(1):100-104. 被引量:5
  • 6LIN F, DONG X, CHEN B M, et al. A robust real-time embedded vision system on an unmanned rotorcraft for ground target following[ J]. IEEE Transactions on Indus- trial Electronics, 2012, 59 (2) : 1038-1049.
  • 7HAN D, KIM J, MIN C, et al. Development of un- manned aerial vehicle (UAV) system with waypoint tracking and vision-based reconnaissance [ J]. Interna- tional Journal of Control Automation & Systems, 2010, 8 (5) : 1091-1099.
  • 8夏凌楠,张波,王营冠,魏建明.基于惯性传感器和视觉里程计的机器人定位[J].仪器仪表学报,2013,34(1):166-172. 被引量:67
  • 9TORRES L, BESANCON G, GEORGES D. EKF-like ob- server with stability for a class of nonlinear systems [ J ].IEEE Transactions on Automatic Control, 2012, 57 (6): 1570-1574.
  • 10JULIER S J, UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear system [ J ]. Ameri- can Control Conference, 1995, 3: 1628-1632.

二级参考文献53

  • 1高卓,江泽,邓麟.机载光电吊舱目标定位技术研究[J].导航定位学报,2013,1(4):74-78. 被引量:10
  • 2王家骐,金光,颜昌翔.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程,2005,13(2):105-116. 被引量:123
  • 3Kay S, Xu C C. CRLB via the characteristic function with application to the K-distribution. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1161-1168.
  • 4Xu B L, Chen Q L, Wu Z Y, Wang Z Q. Analysis and approximation of performance bound for two-observer bearings-only tracking. Information Sciences: an International Journal, 2008, 178(8): 2059-2078.
  • 5Hernandez M L, Kirubarajan T, Bar-Shalom Y. Multisensor resource deployment using posterior Cramer-Rao bounds. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 399-416.
  • 6Tichavsky P, Muravchik C H, Nehorai A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing, 1998, 46(5): 1386-1396.
  • 7Nahi N E. Optimal recursive estimation with uncertain observation. IEEE Transactions on Information Theory, 1969, 15(7): 457-462.
  • 8Niu R X, Willett P, Bar-Shalom Y. Matrix CRLB scaling due to measurements of uncertain origin. IEEE Transactions on Signal Processing, 2001, 49(7): 1325-1335.
  • 9Farina A, Ristic B, Timmoneri L. Cramer-Rao bound for nonlinear filtering with Pd < 1 and its application to target tracking. IEEE Transactions on Signal Processing, 2002, 50(8): 1916-1924.
  • 10Hernandez M, Ristic B, Farina A, Timmoneri L. A comparison of two Cramer-Rao bounds for nonlinear filtering with Pd < 1. IEEE Transactions on Signal Processing, 2004, 52(9): 2361-2370.

共引文献114

同被引文献213

引证文献32

二级引证文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部