期刊文献+

连铸凝固传热时液相有效导热系数的定量化 被引量:10

Quantification for effective thermal conductivity coefficient of melt during solidification and heat transformation of continuous casting
原文传递
导出
摘要 在已验证的电磁-热-溶质传输耦合模型的基础上,以某钢厂同时装配有M-EMS和F-EMS的方、圆坯先进铸机为研究对象,对二维切片凝固传热模型中液相有效导热系数的放大倍数m值进行了定量化研究。结果表明,溶质再分配作用下,方、圆坯凝固终点处的钢液液相线温度较浸入式水口入口处的分别约下降了23.27和5.54℃;与二维切片模型相比,采用耦合模型计算时,铸坯凝固终点位置分别后移了1.8和0.9m;为保证同时准确获取铸坯表面温度分布状态及其内部凝固终点位置,在本方、圆坯工况下,二维切片模型中纯液相和糊状区内液相有效导热系数放大倍数的推荐值范围分别为2.2-2.4和1.1-1.2。 Based on the validated coupling model of electromagnetism, heat and solute transport, m (the magnifica- tion of effective thermal conductivity coefficient of melt used in model of 2I)-slice solidification and heat transfor- mation) was quantitatively investigated for an advanced caster with bloom and round bloom casting equipped with M-EMS and F-EMS simultaneously. The results show that liquidus temperatures of bloom and round bloom at the crater end are reduced by 23.27 and 5.54 ℃ respectively due to solute redistribution as compared to that of original molten steel at nozzle under the given bloom and round bloom casting cases. Compared with the 2D-slice model, the calculated liquid pool lengths are increased by 1.8 m (bloom) and 0. 9 m (round bloom) respectively when using the coupled model. Moreover, to exactly obtain the distribution of surface temperature of bloom and solidification end position simultaneously, the ranges of m for liquid and mushy zones used in the 2D-slice model are recommen- ded as 2.2-2.4 and 1.1-1.2 respectively.
出处 《钢铁研究学报》 CAS CSCD 北大核心 2015年第5期35-41,共7页 Journal of Iron and Steel Research
基金 中国博士后科学基金(2014M562176)
关键词 连铸 凝固与传热 数值模拟 有效导热系数 continuous casting solidification and heat transfer numerical modeling effective thermal conductivity coefficient
  • 相关文献

参考文献18

  • 1Louhenkilpi S, Laitinen E, Nieminen R. Real-time simulation of heat transfer in continuous casting [J]. Metallurgical Trans- actions, 1993,24B(4) :685.
  • 2吴炼,张炯明,刘志明,魏小东,罗衍昭,肖超.小方坯连铸末端电磁搅拌综合控制模型[J].钢铁研究学报,2013,25(2):14-19. 被引量:5
  • 3Petrus B, Zheng K, Zhou X, et al. Real-time, model-based spray-cooling control system for steel continuous casting [J]. Metallurgical and Materials Transaetions, 2011,42B(1) : 87.
  • 4Mizikar E A. Mathematical heat transfer model for solidifiea-tion of continuously cast steel [J]. Transactions of the Metal- lurgical Society of AIME, 1967,239(11):1747.
  • 5Lally B, Biegler L, Henein H. Finite difference heat-transfer modeling for continuous casting [J]. Metallurgical Transac- tion, 1990,21B(4) : 761.
  • 6刘坤,冯亮花,赵连刚,仇圣桃.板坯连铸机二冷段的动态控制模型[J].钢铁研究学报,2005,17(2):75-78. 被引量:12
  • 7Mills K C, Yuchu S U, Zushu L I, et al. Equations for the cal- culation of the thermo-physical properties of stainless steel [J]. ISIJ International, 2004,44 (10) : 1661.
  • 8Crank J. Free and moving boundary problems [M]. Oxford: Clarendon Press, 1984.
  • 9Marcandalli A, Mapelli C, Nicodemi W. A thermomechanical model for simulation of carbon steel solidification in mould in continuous casting [J]. Ironmaking and Steelmaking, 2003,30 (4) : 265.
  • 10Choudhary S K, Mazumdar D. Mathematical modelling of her transfer phenomena in continuous casting of steel [J]. ISIJ In- ternational, 1994,34(7) : 584.

二级参考文献23

  • 1冯军,陈伟庆,王晓峰,王庆贤,苏旺.凝固末端电磁搅拌对高碳钢内部质量的影响[J].钢铁,2006,41(11):26-28. 被引量:18
  • 2颜广庭,陈登福.55SiMnVB钢方坯连铸二冷区凝固的最佳工艺制度控制模型[J].钢铁研究学报,1990,2(3):23-31. 被引量:7
  • 3Christian F,Kurt D.Dynamic Cooling Models[A].AISEConference[C].Nashville TN/USA:1999.25-29.
  • 4LOUHENKILPI S, LAITINEN E, NIEMINEN R. Realtime simulation of heat transfer in continuous casting[J].Metall Trans B, 1993, 24B: 685-693.
  • 5FERDINANDO R C C, LAN KEITH C, PETRUS CHRISTIAAN P. Specification framework for control the secondary cooling zone in continuous casting [J]. ISIJ International, 1998, 38(5):447-453.
  • 6EL-BEALY M, LESKINEN N, FREDRIKSSON H. Simulation of cooling conditions in secondary cooling zones in continuous casting process [J]. Ironrnaking and Steelmaking, 1995, 22(3):246-255.
  • 7DAS S K. Numerical formalism for solving heat transfer in continuous casting process by nonorthogonal co-ordinate transformation strategy[J]. Scand J Metall, 1993, 22:198-202.
  • 8TOSHIYA MIYAKE D, NAKAYAMA K. Effects of heat and fluid flow in continuous casting molds on solidification shell growth[J]. Kobelco Technology Review, 1998, 21: 7-13.
  • 9陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002..
  • 10YB/T153-1999.优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图[S].

共引文献45

同被引文献92

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部