期刊文献+

基于kNN的多标签分类预处理方法 被引量:5

Pre-processing Method of Multi-label Classification Based on kNN
在线阅读 下载PDF
导出
摘要 多标签学习已成为当前机器学习的研究热点。为了提高分类性能,对训练集中的噪声数据进行预处理,提出一种基于k近邻(kNN)的多标签分类去噪方法:对现有的多标签数据集进行分析后获得近似正态分布的特征,通过将噪声标记改为其k近邻标记的方法,滤去部分噪声信息,从而得到相对高质量的数据集。在MULAN平台上使用多个数据集对6种多标签分类算法进行了噪声去除前后的对比测试,实验结果表明,多标签的预处理方法有效提高了分类器的性能。此方法对于分布特征明显的数据集具有较好的适用性。 Multi-label learning is a new field in machine learning. In order to improve the multi-label classification precision, a new kNN method was used to remove the noise labels. First, a normal distribution is discovered by analyzing the characteristics of multi-label datasets, and then the high quality datasets are generated by changing the value of noisy labels to their k-Nearest Neighbors. In the experiments, six kinds of multi-label classification methods were tested on MULAN with new datasets. Compared to the primal datasets, the classification precision based on new datasets is better. Research results show this method is suitable for the data set which has a regular distribution.
出处 《计算机科学》 CSCD 北大核心 2015年第5期106-108,131,共4页 Computer Science
基金 浙江省教育厅项目(Y201328291) 浙江省自然科学基金项目(LZ14F030001 LY14F020012)资助
关键词 多标签 分类 正态分布 预处理 KNN Multi-label, Classification, Normal distribution, Pretreatment, kNN
  • 相关文献

参考文献19

  • 1Zhang Min-ling,Zhou Zhi-hua.ML-KNN:A lazy learning ap-proach to multi-label learning [J].Pattern Recognition,2007,7(40):2038-2048.
  • 2Tsoumakas G,Katakis I,Vlahavas I.Mining multi-label data[M]∥Data Mining and Knowledge Discovery Handbook.New York:Springer US,2010.
  • 3Xu Xin-shun,Jiang Yuan,Peng Liang,et al.Ensemble approach based on conditional random field for multi-labels image and video annotation[C]∥Proceedings of the 19th ACM international conference on Multimedia.Scottsdale,Arizona,USA,2011:1377-1380.
  • 4Wang Jing-dong,Zhao Ying-hai,Wu Xiu-qing,et al.A transductive multi-label learning approach for video concept detection [J].Pattern Recognition,2011,44(10/11):2274-2286.
  • 5Sanden C,Zhang J Z.Enhancing multi-label music genre techniques [C]∥Proceedings of the 34th International ACM SIGIR Conference on Research and Development in information Retrieval(SIGIR'11).New York,USA,2011:705-714.
  • 6Wieczorkowska A,Synak P,Ras Z.Multi-label classification of emotions in music[C]∥Proceeding of the 2006 International Conference on Intelligent Information Proceeding and Web Mi-ning(IIPWM).2006:307-315.
  • 7Trohidis K,Tsoumakas G,Kalliris G,et al.Multi label classification of music into emotions[C]∥Proceeding of 9th International Conference on Music Information Retrieval(ISMIR).Philadelphia,PA,USA,2008:69-75.
  • 8Zhang Yi,Burer S,Street W N.Ensemble pruning via semi-definite programming [J].Journal of Machine Learning Research,2006(7):1315-1338.
  • 9Read J,Pfahringer B,Holmes G,et al.Classifier Chains forMulti-label Classification[J].Machine Learning,2011,85(3):333-359.
  • 10Shen X,Boutell M,Luo J,et al.Multi-label machine learning and its application to semantic scene classification[C]∥Proceedings of the 2004 International Symposium on Electronic Imaging.San Jose,California,USA,2004:18-22.

同被引文献39

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部