期刊文献+

一种自适应模糊小波神经网络及其在交流伺服控制中的应用 被引量:7

Application of Adaptive Fuzzy Wavelet Neural Network in AC Servo Control System
在线阅读 下载PDF
导出
摘要 针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRWNN)构成。给出了SRWNN参数的迭代算法,利用SRWNN辨识器为控制器提供实时梯度信息,有效地克服了参数变化和负载扰动等不确定因素的影响,且具有良好的动态特性。采用Lyapunov稳定性理论方法证明了闭环系统的稳定性。仿真研究和样机试验结果证明了所提方案的有效性和正确性。 A novel indirect stable adaptive fuzzy wavelet neural(FWNN) controller is proposed to control the nonlinearity,wide variation in loads,time-variation and uncertain disturbance of the high power AC servo system in a certain weapon.In the proposed approach,the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of Takagi-Sugeno-Kang (TSK) fuzzy model.A back-propagation (BP) algorithm offers the real-time gradient information to the adaptive FWNN controller with the aid of an adaptive SRWNN identifier,which overcomes the effects of parameter variations,load disturbances and other uncertainties effectively.It has a good dynamic performance.The stability of the closed loop system is guaranteed by using the Lyapunov method.The simulation result and the prototype test prove that the proposed method is effective and suitable.
出处 《兵工学报》 EI CAS CSCD 北大核心 2015年第5期781-788,共8页 Acta Armamentarii
基金 国家自然科学基金项目(51305205)
关键词 兵器科学与技术 大功率交流伺服系统 自回归小波神经网络 模糊小波神经网络间接自适应控制器 模糊小波神经网络 ordnance science and technology high power AC servo system self-recurrent wavelet neural network indirect stable adaptive fuzzy wavelet neural controller fuzzy wavelet neural network
  • 相关文献

参考文献15

  • 1侯伯杰,李小清,周云飞,滕伟.直线电机伺服系统的复合前馈PID控制[J].机床与液压,2009,37(2):56-58. 被引量:32
  • 2Banaei M R, Kami A. Interline power flow controller (IPFC) based damping recurrent neural network controllers for enhancing stability [ J ]. Energy Conversion and Management, 2011, 52 (7) : 2629 - 2636.
  • 3Mehraeen S, Jagannathan S, Crow M L. Power system stabilization using adaptive neural network-based dynamic surface control [ J ]. IEEE Transactions on Power Systems, 2011, 26 ( 2 ) :669 - 680.
  • 4Mishra S. Neural-network-based adaptive UPFC for improving transient stability performance of power system[ J ]. IEEE Transac- tions on Neural Networks, 2006, 17(2) :461 -470.
  • 5Yang Y, Vilathgamuwa D, Azizur R M. Implementation of an arti- ficial neutral network based, real time adaptive controller for an in- terior permanent magnet motor drive[ J. IEEE Transactions on ln- dust Applications, 2003, 39( 1 ) :96 - 104.
  • 6Rubaai A, Kotaru R, Kankam M D. Online training of parallel neutral network estimators for control of induction motors [ J ]. IEEE Transactions on Industrial Application, 2001, 37 (5): 1512 - 1521.
  • 7Faa J L, Wai R J, Hong P C. A PM synchronous servo motor drive with an on-line trained fuzzy neural network controller[ J ]. IEEE Transactions on Energy Conversion, 1998, 13 (4): 319 - 325.
  • 8Zhang Q H, Benveniste A. Wavelet neural[ J ]. IEEE Transac- tions on Neural Networks, 1992, 3(6) : 889 -989.
  • 9Yoo S J, Park J B, Choi Y H. Indirect adaptive control of nonlin- ear dynamic systems using self-recurrent wavelet neural networks via adaptive learning rates [ J ]. Information Sciences, 2007, 177 ( 15 ) :3074 - 3098.
  • 10Hou D, Zhang P A, Xu J. Fuzzy wavelet networks for function learning[ J]. IEEE Transactions on Fuzzy Systems, 2001,9( 1 ) : 200 - 211.

二级参考文献13

共引文献65

同被引文献63

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部