摘要
针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRWNN)构成。给出了SRWNN参数的迭代算法,利用SRWNN辨识器为控制器提供实时梯度信息,有效地克服了参数变化和负载扰动等不确定因素的影响,且具有良好的动态特性。采用Lyapunov稳定性理论方法证明了闭环系统的稳定性。仿真研究和样机试验结果证明了所提方案的有效性和正确性。
A novel indirect stable adaptive fuzzy wavelet neural(FWNN) controller is proposed to control the nonlinearity,wide variation in loads,time-variation and uncertain disturbance of the high power AC servo system in a certain weapon.In the proposed approach,the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of Takagi-Sugeno-Kang (TSK) fuzzy model.A back-propagation (BP) algorithm offers the real-time gradient information to the adaptive FWNN controller with the aid of an adaptive SRWNN identifier,which overcomes the effects of parameter variations,load disturbances and other uncertainties effectively.It has a good dynamic performance.The stability of the closed loop system is guaranteed by using the Lyapunov method.The simulation result and the prototype test prove that the proposed method is effective and suitable.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2015年第5期781-788,共8页
Acta Armamentarii
基金
国家自然科学基金项目(51305205)