期刊文献+

基于图像超分辨率重建的质心细分的研究 被引量:6

Research on subdivided locating of star image via super resolution
在线阅读 下载PDF
导出
摘要 本文提出了一种基于超分辨率图像重建的质心细分定位的新方法。在图像识别与匹配中,往往需要用到物理、数字等的特征提取方法,当给定的图像分辨率低时,就会使得所提取出的特征产生不可忽略的误差。为了解决这一问题,本文以实拍星图分辨率低的局限性为例,并结合传统的质心提取方法得到观测星图中任意两颗星的角距,验证新方法降低误差的有效性。实验结果表明,在同等系统误差条件下,相对于原始星图求得的星角距,基于超分辨率重建后的星图所得到的观测星的角距值更接近于真实角距,精度提高了29.56%,即新方法提取到的特征更加精确。 A novel method is put forward in subdividing locating of star image in this paper, which is based on super resolution image reconstruction that can generate high resolution image with more information contained by using one or more low resolution images. When the resolution of given image is low, it makes the features extracted errors not be ignored. In order to solve this problem, taking the limitations of real star map with low resolution for instance, we use the traditional method of centroid extraction to obtain any two stars' angular distance in star map, verifying the effectiveness of the new method in reducing errors. By comparing the angular distances with real angular distances in star database, the results show that angular distance achieved from super resolution reconstruction star map is closer to real value, with the precision 29.56% improved than that from original star map.
作者 周明远 石英
出处 《电子设计工程》 2015年第9期127-130,134,共5页 Electronic Design Engineering
关键词 稀疏表示 超分辨率 字典学习 星图识别 质心细分 sparse representation super resolution dictionary learning star Identification subdivided Locating
  • 相关文献

参考文献12

  • 1杨君,张涛,宋靖雁,梁斌.星点质心亚像元定位的高精度误差补偿法[J].光学精密工程,2010,18(4):1002-1010. 被引量:43
  • 2张进,王仲,李雅洁,叶声华.高精度影像测量系统中图像的超分辨率重建[J].光学精密工程,2011,19(1):168-174. 被引量:11
  • 3覃凤清,何小海,陈为龙,吴炜,杨晓敏.一种图像配准的超分辨率重建[J].光学精密工程,2009,17(2):409-416. 被引量:20
  • 4Farsiu S,Robinson M D,Elad M,et al. Fast and robust mul- tiframe super resolution[J]. IEEE Trans. On Image Process- ing,2004, 13( 10):1327-1344.
  • 5Blatt D,Hero A O. Energy based sensor network source localization via projection onto convex set (POCS)[J]. IEEE Trans. 071Signal Processing,2006,54(9):3614-3619.
  • 6Chou W,Siohan O,Myrvoll T A. Extended maximum a posterior linear regression (EMAPLR) model adaptation for speech recognition [C]//Proc. of the 6th International Conference on Spoken Language Processing, 2000:616-619.
  • 7Chen Shaobing,DonohoD,Saunders M. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1999,20( 1 ):31-61.
  • 8Aharon M,Elad M,Bruckstein A. nnk-svd: An algorithm for designing overcomplete dictionaries for sparse representation[J]. Signal Processing, IEEE Transactions on,2006,54 (11): 4311-4322.
  • 9Freeman W T,Jones T R,Pasztor E C, Example-based super-resolution [J]. IEEE Comput. Graph. Appl.,2002,22 (2):56-65.
  • 10Jianchao Yang,John Wright,Thomas S,et al. Image Super- Resolution via Sparse Representation [J]. IEEE Transactions On Image Pnwessing,2010,19( 11 ):2861-2873.

二级参考文献53

共引文献183

同被引文献67

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部